Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5445, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114198

RESUMO

Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Moscas Tsé-Tsé , Adenilil Ciclases/metabolismo , Animais , AMP Cíclico , Trypanosoma brucei brucei/metabolismo , Moscas Tsé-Tsé/parasitologia
2.
PLoS Biol ; 19(8): e3001359, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34388147

RESUMO

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.


Assuntos
Glicerol Quinase/metabolismo , Glicerol/metabolismo , Hexoquinase/metabolismo , Microcorpos/enzimologia , Trypanosoma brucei brucei/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular
3.
PLoS Negl Trop Dis ; 15(3): e0009246, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33661894

RESUMO

One health (OH) approaches have increasingly been used in the last decade in the fight against zoonotic neglected tropical diseases (NTDs). However, descriptions of such collaborations between the human, animal and environmental health sectors are still limited for French-speaking tropical countries. The objective of the current survey was to explore the diversity of OH experiences applied to research, surveillance and control of NTDs by scientists from French-speaking countries, and discuss their constraints and benefits. Six zoonotic NTDs were targeted: echinococcoses, trypanosomiases, leishmaniases, rabies, Taenia solium cysticercosis and leptospiroses. Invitations to fill in an online questionnaire were sent to members of francophone networks on NTDs and other tropical diseases. Results from the questionnaire were discussed during an international workshop in October 2019. The vast majority (98%) of the 171 respondents considered OH approaches relevant although only 64% had implemented them. Among respondents with OH experience, 58% had encountered difficulties mainly related to a lack of knowledge, interest and support for OH approaches by funding agencies, policy-makers, communities and researchers. Silos between disciplines and health sectors were still strong at both scientific and operational levels. Benefits were reported by 94% of respondents with OH experience, including increased intellectual stimulation, stronger collaborations, higher impact and cost-efficiency of interventions. Recommendations for OH uptake included advocacy, capacity-building, dedicated funding, and higher communities' involvement. Improved research coordination by NTD networks, production of combined human-animal health NTD impact indicators, and transversal research projects on diagnostic and reservoirs were also considered essential.


Assuntos
Doenças Negligenciadas/prevenção & controle , Medicina Tropical , Zoonoses/prevenção & controle , Animais , Pesquisa Biomédica , Humanos , Inquéritos e Questionários
4.
Mol Microbiol ; 93(1): 80-97, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24811325

RESUMO

During its life cycle, the protozoan pathogen Leishmania donovani is exposed to contrasting environments inside insect vector and vertebrate host, to which the parasite must adapt for extra- and intracellular survival. Combining null mutant analysis with phosphorylation site-specific mutagenesis and functional complementation we genetically tested the requirement of the L. donovani chaperone cyclophilin 40 (LdCyP40) for infection. Targeted replacement of LdCyP40 had no effect on parasite viability, axenic amastigote differentiation, and resistance to various forms of environmental stress in culture, suggesting important functional redundancy to other parasite chaperones. However, ultrastructural analyses and video microscopy of cyp40-/- promastigotes uncovered important defects in cell shape, organization of the subpellicular tubulin network and motility at stationary growth phase. More importantly, cyp40-/- parasites were unable to establish intracellular infection in murine macrophages and were eliminated during the first 24 h post infection. Surprisingly, cyp40-/- infectivity was restored in complemented parasites expressing a CyP40 mutant of the unique S274 phosphorylation site. Together our data reveal non-redundant CyP40 functions in parasite cytoskeletal remodelling relevant for the development of infectious parasites in vitro independent of its phosphorylation status, and provide a framework for the genetic analysis of Leishmania-specific phosphorylation sites and their role in regulating parasite protein function.


Assuntos
Ciclofilinas/genética , Ciclofilinas/metabolismo , Leishmania donovani/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Animais , Citoesqueleto/metabolismo , Leishmania donovani/ultraestrutura , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Fosforilação , Estresse Fisiológico
5.
Cell Microbiol ; 16(3): 425-33, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24134537

RESUMO

African trypanosomes are flagellated protozoan parasites transmitted by the bite of tsetse flies and responsible for sleeping sickness in humans. Their complex development in the tsetse digestive tract requires several differentiation and migration steps that are thought to rely on trypanosome motility. We used a functional approach in vivo to demonstrate that motility impairment prevents trypanosomes from developing in their vector. Deletion of the outer dynein arm component DNAI1 results in strong motility defects but cells remain viable in culture. However, although these mutant trypanosomes could infect the tsetse fly midgut, they were neither able to reach the foregut nor able to differentiate into the next stage, thus failing to complete their parasite cycle. This is the first in vivo demonstration that trypanosome motility is essential for the accomplishment of the parasite cycle.


Assuntos
Dineínas/genética , Locomoção/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Moscas Tsé-Tsé/parasitologia , Animais , Diferenciação Celular/genética , Sistema Digestório/metabolismo , Trato Gastrointestinal/parasitologia , Masculino , Interferência de RNA , RNA Interferente Pequeno , Tripanossomíase Africana/parasitologia
6.
J Clin Microbiol ; 44(2): 459-67, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16455899

RESUMO

At least 13 characterized Leishmania species are known to infect humans in South America. Five of these parasites are transmitted in the sylvatic ecotopes of the whole French Guianan territory and responsible for cutaneous leishmaniasis. For the diagnosis of cutaneous leishmaniasis, restriction fragment length polymorphism (RFLP) analyses have shown promising results. Thus, the end of the small subunit and internal transcribed spacer 1 of the rRNA genes were sequenced and targeted by PCR-RFLP analysis in the 10 main New World (NW) Leishmania species from the two subgenera. Then, the procedure was tested on 40 samples from patients with cutaneous leishmaniasis, and its results were compared with those of conventional methods. (i) The results of this simple genus-specific method were in agreement with those of previous isoenzyme analyses. (ii) This method distinguished the most medically relevant Leishmania species with only one enzyme (RsaI). (iii) This method could be performed directly on human biopsy specimens (sensitivity of 85.7%). Performing NW Leishmania species typing rapidly and easily in the field constitutes a very valuable improvement for detection of Leishmania spp. Revealing great diversity with several enzymes, this method could also be useful for taxonomic, ecological, and epidemiological studies in space and time.


Assuntos
Leishmania/classificação , Leishmania/genética , Leishmaniose Cutânea/diagnóstico , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Animais , DNA de Protozoário/análise , DNA de Protozoário/isolamento & purificação , DNA Espaçador Ribossômico/análise , Humanos , Leishmania/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Dados de Sequência Molecular , Polimorfismo Genético , Sensibilidade e Especificidade , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA