Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Dermatol ; 191(4): 568-579, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38820176

RESUMO

BACKGROUND: Recessive dystrophic epidermolysis bullosa (RDEB) is a blistering disease caused by mutations in the gene encoding type VII collagen (C7). RDEB is associated with fibrosis, which is responsible for severe complications. The phenotypic variability observed in siblings with RDEB suggests that epigenetic modifications contribute to disease severity. Identifying epigenetic changes may help to uncover molecular mechanisms underlying RDEB pathogenesis and new therapeutic targets. OBJECTIVES: To investigate histone acetylation in RDEB skin and to explore histone deacetylase inhibitors (HDACi) as therapeutic molecules capable of counteracting fibrosis and disease progression in RDEB mice. METHODS: Acetylated histone levels were detected in human skin by immunofluorescence and in RDEB fibroblasts by enzyme-linked immunosorbent assay (ELISA). The effects of givinostat and valproic acid (VPA) on RDEB fibroblast fibrotic behaviour were assessed by a collagen-gel contraction assay, Western blot and immunocytofluorescence for α-smooth muscle actin, and ELISA for released transforming growth factor (TGF)-ß1. RNA sequencing was performed in HDACi- and vehicle-treated RDEB fibroblasts. VPA was systemically administered to RDEB mice and effects on overt phenotype were monitored. Fibrosis was investigated in the skin using histological and immunofluorescence analyses. Eye and tongue defects were examined microscopically. Mass spectrometry proteomics was performed on skin protein extracts from VPA-treated RDEB and control mice. RESULTS: Histone acetylation decreases in RDEB skin and primary fibroblasts. RDEB fibroblasts treated with HDACi lowered fibrotic traits, including contractility, TGF-ß1 release and proliferation. VPA administration to RDEB mice mitigated severe manifestations affecting the eyes and paws. These effects were associated with fibrosis inhibition. Proteomic analysis of mouse skin revealed that VPA almost normalized protein sets involved in protein synthesis and immune response, processes linked to the increased susceptibility to cancer and bacterial infections seen in people with RDEB. CONCLUSIONS: Dysregulated histone acetylation contributes to RDEB pathogenesis by facilitating the progression of fibrosis. Repurposing of HDACi could be considered for disease-modifying treatments in RDEB.


Recessive dystrophic epidermolysis bullosa (or 'RDEB') is a rare skin disease that affects fewer than 5,000 people in the USA. A similar number of people in Europe are affected. RDEB is caused by mutations in the gene that controls the production of a protein called 'type VII collagen' (or 'C7'). A shortage of C7 causes fragile skin that blisters. In severe forms of RDEB, wounds heal slowly and can even affect a person's life expectancy. Differences in the disease are common in people (even identical twins) with RDEB who have similar levels of C7. This suggests that how severe the disease is could be affected by molecular processes that control other genes. Understanding these processes may help us to find treatments for RDEB. This study was done in Italy, in collaboration with centres in Germany and Switzerland. We wanted to see whether a chemical modification called 'histone acetylation' (which influences gene activity) is different in RDEB and whether it can be targeted by a specific treatment. We found that histone acetylation is reduced in RDEB skin and in skin cells grown in the lab called 'fibroblasts'. When we increased histone acetylation in fibroblasts with two drugs called givinostat and valproic acid, the amount of scar tissue produced decreased. This is important because scar tissue can lead to severe symptoms. We carried out more experiments to study the effects of givinostat and valproic acid in mice with RDEB. We found that valproic acid reduces the severity of RDEB by decreasing the disease's harmful effects and reducing the amount of scar tissue. Our findings suggest that abnormal histone acetylation contributes to the scar tissue seen in RDEB. Our study shows that valproic acid could be useful in treating the scarring seen in RDEB and in reducing the effects of the disease. As this drug is used to treat other diseases, there could be potential for rapid repurposing of it for RDEB.


Assuntos
Colágeno Tipo VII , Progressão da Doença , Epidermólise Bolhosa Distrófica , Fibroblastos , Fibrose , Inibidores de Histona Desacetilases , Pele , Epidermólise Bolhosa Distrófica/tratamento farmacológico , Epidermólise Bolhosa Distrófica/patologia , Epidermólise Bolhosa Distrófica/genética , Animais , Humanos , Inibidores de Histona Desacetilases/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Colágeno Tipo VII/genética , Pele/patologia , Pele/efeitos dos fármacos , Camundongos , Ácido Valproico/farmacologia , Histonas/metabolismo , Acetilação/efeitos dos fármacos , Masculino , Feminino , Modelos Animais de Doenças , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Criança , Carbamatos
2.
Sci Adv ; 9(35): eade7486, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656784

RESUMO

In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔß3-αC oncoproteins usually lack five amino acids in the ß3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔß3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔß3-αC oncoproteins. We show that BRAFΔß3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔß3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔß3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas B-raf , Humanos , Dimerização , Proteínas Proto-Oncogênicas B-raf/genética , Aminoácidos
3.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36574265

RESUMO

Limitation of excessive inflammation due to selective degradation of pro-inflammatory proteins is one of the cytoprotective functions attributed to autophagy. In the current study, we highlight that selective autophagy also plays a vital role in promoting the establishment of a robust inflammatory response. Under inflammatory conditions, here TLR3-activation by poly(I:C) treatment, the inflammation repressor TNIP1 (TNFAIP3 interacting protein 1) is phosphorylated by Tank-binding kinase 1 (TBK1) activating an LIR motif that leads to the selective autophagy-dependent degradation of TNIP1, supporting the expression of pro-inflammatory genes and proteins. This selective autophagy efficiently reduces TNIP1 protein levels early (0-4 h) upon poly(I:C) treatment to allow efficient initiation of the inflammatory response. At 6 h, TNIP1 levels are restored due to increased transcription avoiding sustained inflammation. Thus, similarly as in cancer, autophagy may play a dual role in controlling inflammation depending on the exact state and timing of the inflammatory response.


Assuntos
Autofagia , Proteínas de Ligação a DNA , Inflamação , Proteínas Serina-Treonina Quinases , Humanos , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
4.
Nat Commun ; 13(1): 4685, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948564

RESUMO

The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1.


Assuntos
Complexo de Golgi , Lisossomos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação
5.
Mol Cell Proteomics ; 17(10): 1909-1921, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980615

RESUMO

Seasonal epidemics of influenza A virus are a major cause of severe illness and are of high socio-economic relevance. For the design of effective antiviral therapies, a detailed knowledge of pathways perturbed by virus infection is critical. We performed comprehensive expression and organellar proteomics experiments to study the cellular consequences of influenza A virus infection using three human epithelial cell lines derived from human lung carcinomas: A549, Calu-1 and NCI-H1299. As a common response, the type I interferon pathway was up-regulated upon infection. Interestingly, influenza A virus infection led to numerous cell line-specific responses affecting both protein abundance as well as subcellular localization. In A549 cells, the vesicular compartment appeared expanded after virus infection. The composition of autophagsomes was altered by targeting of ribosomes, viral mRNA and proteins to these double membrane vesicles. Thus, autophagy may support viral protein translation by promoting the clustering of the respective molecular machinery in autophagosomes in a cell line-dependent manner.


Assuntos
Autofagossomos/metabolismo , Vírus da Influenza A/metabolismo , Proteínas Ribossômicas/metabolismo , Autofagia , Linhagem Celular Tumoral , Humanos , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo
6.
Mol Microbiol ; 86(5): 1156-66, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23016825

RESUMO

All glycerophospholipids are made from phosphatidic acid, which, according to the traditional view, is generated at the cytosolic surface of the ER. In yeast, phosphatidic acid is synthesized de novo by two acyl-CoA-dependent acylation reactions. The first is catalysed by one of the two homologous glycerol-3-phosphate acyltransferases Gpt2p/Gat1p and Sct1p/Gat2p, the second by one of the two 1-acyl-sn-glycerol-3-phosphate acyltransferases Slc1p and Ale1p/Slc4p. To study the biogenesis and topology of Gpt2p we observed the location of dual topology reporters inserted after various transmembrane helices. Moreover, using microsomes, we probed the accessibility of natural and substituted cysteine residues to a membrane impermeant alkylating agent and tested the protease sensitivity of various epitope tags inserted into Gpt2p. Finally, we assayed the sensitivity of the acyltransferase activity to membrane impermeant agents targeting lysine residues. By all these criteria we find that the most conserved motifs of Gpt2p and its functionally relevant lysines are oriented towards the ER lumen. Thus, the first step in biosynthesis of phosphatidic acid in yeast seems to occur in the ER lumen and substrates may have to cross the ER membrane.


Assuntos
Retículo Endoplasmático/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Microssomos/enzimologia , Ácidos Fosfatídicos/biossíntese , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico , Glicerol-3-Fosfato O-Aciltransferase/química , Glicerol-3-Fosfato O-Aciltransferase/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
7.
J Biol Chem ; 286(42): 36438-47, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21849510

RESUMO

In yeast, phosphatidic acid, the biosynthetic precursor for all glycerophospholipids and triacylglycerols, is made de novo by the 1-acyl-sn-glycerol-3-phosphate acyltransferases Ale1p and Slc1p. Ale1p belongs to the membrane-bound O-acyltransferase (MBOAT) family, which contains many enzymes acylating lipids but also others that acylate secretory proteins residing in the lumen of the ER. A histidine present in a very short loop between two predicted transmembrane domains is the only residue that is conserved throughout the MBOAT gene family. The yeast MBOAT proteins of known function comprise Ale1p, the ergosterol acyltransferases Are1p and Are2p, and Gup1p, the last of which acylates lysophosphatidylinositol moieties of GPI anchors on ER lumenal GPI proteins. C-terminal topology reporters added to truncated versions of Gup1p yield a topology predicting a lumenal location of its uniquely conserved histidine 447 residue. The same approach shows that Ale1p and Are2p also have the uniquely conserved histidine residing in the ER lumen. Because these data raised the possibility that phosphatidic acid could be made in the lumen of the ER, we further investigated the topology of the second yeast 1-acyl-sn-glycerol-3-phosphate acyltransferase, Slc1p. The location of C-terminal topology reporters, microsomal assays probing the protease sensitivity of inserted tags, and the accessibility of natural or artificially inserted cysteines to membrane-impermeant alkylating agents all indicate that the most conserved motif containing the presumed active site histidine of Slc1p is oriented toward the ER lumen, whereas other conserved motifs are cytosolic. The implications of these findings are discussed.


Assuntos
Aciltransferases/metabolismo , Retículo Endoplasmático/enzimologia , Membranas Intracelulares/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Aciltransferases/genética , Dineínas , Retículo Endoplasmático/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo
8.
J Biol Chem ; 282(42): 30845-55, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17675291

RESUMO

Phosphatidic acid is the intermediate, from which all glycerophospholipids are synthesized. In yeast, it is generated from lysophosphatidic acid, which is acylated by Slc1p, an sn-2-specific, acyl-coenzyme A-dependent 1-acylglycerol-3-phosphate O-acyltransferase. Deletion of SLC1 is not lethal and does not eliminate all microsomal 1-acylglycerol-3-phosphate O-acyltransferase activity, suggesting that an additional enzyme may exist. Here we show that SLC4 (Yor175c), a gene of hitherto unknown function, encodes a second 1-acyl-sn-glycerol-3-phosphate acyltransferase. SLC4 harbors a membrane-bound O-acyltransferase motif and down-regulation of SLC4 strongly reduces 1-acyl-sn-glycerol-3-phosphate acyltransferase activity in microsomes from slc1Delta cells. The simultaneous deletion of SLC1 and SLC4 is lethal. Mass spectrometric analysis of lipids from slc1Delta and slc4Delta cells demonstrates that in vivo Slc1p and Slc4p generate almost the same glycerophospholipid profile. Microsomes from slc1Delta and slc4Delta cells incubated with [14C]oleoyl-coenzyme A in the absence of lysophosphatidic acid and without CTP still incorporate the label into glycerophospholipids, indicating that Slc1p and Slc4p can also use endogenous lysoglycerophospholipids as substrates. However, the lipid profiles generated by microsomes from slc1Delta and slc4Delta cells are different, and this suggests that Slc1p and Slc4p have a different substrate specificity or have access to different lyso-glycerophospholipid substrates because of a different subcellular location. Indeed, affinity-purified Slc1p displays Mg2+-dependent acyltransferase activity not only toward lysophosphatidic acid but also lyso forms of phosphatidylserine and phosphatidylinositol. Thus, Slc1p and Slc4p may not only be active as 1-acylglycerol-3-phosphate O-acyltransferases but also be involved in fatty acid exchange at the sn-2-position of mature glycerophospholipids.


Assuntos
Aciltransferases/metabolismo , Ácidos Graxos/metabolismo , Glicerofosfolipídeos/biossíntese , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acil Coenzima A/química , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Aciltransferases/química , Aciltransferases/genética , Motivos de Aminoácidos/fisiologia , Regulação para Baixo/fisiologia , Dineínas , Ácidos Graxos/química , Ácidos Graxos/genética , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Glicerofosfolipídeos/química , Glicerofosfolipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lisofosfolipídeos/metabolismo , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microssomos/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato/fisiologia
9.
J Biol Chem ; 279(19): 19614-27, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-14985347

RESUMO

In humans and Saccharomyces cerevisiae the free glycosylphosphatidylinositol (GPI) lipid precursor contains several ethanolamine phosphate side chains, but these side chains had been found on the protein-bound GPI anchors only in humans, not yeast. Here we confirm that the ethanolamine phosphate side chain added by Mcd4p to the first mannose is a prerequisite for the addition of the third mannose to the GPI precursor lipid and demonstrate that, contrary to an earlier report, an ethanolamine phosphate can equally be found on the majority of yeast GPI protein anchors. Curiously, the stability of this substituent during preparation of anchors is much greater in gpi7Delta sec18 double mutants than in either single mutant or wild type cells, indicating that the lack of a substituent on the second mannose (caused by the deletion of GPI7) influences the stability of the one on the first mannose. The phosphodiester-linked substituent on the second mannose, probably a further ethanolamine phosphate, is added to GPI lipids by endoplasmic reticulum-derived microsomes in vitro but cannot be detected on GPI proteins of wild type cells and undergoes spontaneous hydrolysis in saline. Genetic manipulations to increase phosphatidylethanolamine levels in gpi7Delta cells by overexpression of PSD1 restore cell growth at 37 degrees C without restoring the addition of a substituent to Man2. The three putative ethanolamine-phosphate transferases Gpi13p, Gpi7p, and Mcd4p cannot replace each other even when overexpressed. Various models trying to explain how Gpi7p, a plasma membrane protein, directs the addition of ethanolamine phosphate to mannose 2 of the GPI core have been formulated and put to the test.


Assuntos
Etanolaminas/química , Glicosilfosfatidilinositóis/química , Manose/química , Saccharomyces cerevisiae/metabolismo , Animais , Bacillus cereus/enzimologia , Bovinos , Membrana Celular/metabolismo , Etanolamina/química , Genótipo , Humanos , Lipídeos/química , Proteínas de Membrana/fisiologia , Modelos Químicos , Mutação , Peptídeos/química , Fosfatidiletanolaminas/química , Diester Fosfórico Hidrolases/química , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Plasmídeos/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA