Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 250: 115186, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796300

RESUMO

Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structural proteins essential for the virus life cycle. Both proteases are recognized as promising drug targets for the development of anti-coronavirus chemotherapy. Aiming at identifying broad spectrum agents for the treatment of COVID-19 but also to fight emergent coronaviruses, we focused on 3CLpro that is well conserved within this viral family. Here we present a high-throughput screening of more than 89,000 small molecules that led to the identification of a new chemotype, potent inhibitor of the SARS-CoV-2 3CLpro. The mechanism of inhibition, the interaction with the protease using NMR and X-Ray, the specificity against host cysteine proteases and promising antiviral properties in cells are reported.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Peptídeo Hidrolases , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/química , Proteases 3C de Coronavírus , Antivirais/química
2.
Front Microbiol ; 13: 828636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283856

RESUMO

Hepatitis E virus (HEV) is the major cause of acute hepatitis worldwide. HEV is a positive-sense RNA virus expressing three open reading frames (ORFs). ORF1 encodes the ORF1 non-structural polyprotein, the viral replicase which transcribes the full-length genome and a subgenomic RNA that encodes the structural ORF2 and ORF3 proteins. The present study is focused on the replication step with the aim to determine whether the ORF1 polyprotein is processed during the HEV lifecycle and to identify where the replication takes place inside the host cell. As no commercial antibody recognizes ORF1 in HEV-replicating cells, we aimed at inserting epitope tags within the ORF1 protein without impacting the virus replication efficacy. Two insertion sites located in the hypervariable region were thus selected to tolerate the V5 epitope while preserving HEV replication efficacy. Once integrated into the infectious full-length Kernow C-1 p6 strain, the V5 epitopes did neither impact the replication of genomic nor the production of subgenomic RNA. Also, the V5-tagged viral particles remained as infectious as the wildtype particles to Huh-7.5 cells. Next, the expression pattern of the V5-tagged ORF1 was compared in heterologous expression and replicative HEV systems. A high molecular weight protein (180 kDa) that was expressed in all three systems and that likely corresponds to the unprocessed form of ORF1 was detected up to 25 days after electroporation in the p6 cell culture system. Additionally, less abundant products of lower molecular weights were detected in both in cytoplasmic and nuclear compartments. Concurrently, the V5-tagged ORF1 was localized by confocal microscopy inside the cell nucleus but also as compact perinuclear substructures in which ORF2 and ORF3 proteins were detected. Importantly, using in situ hybridization (RNAScope ®), positive and negative-strand HEV RNAs were localized in the perinuclear substructures of HEV-producing cells. Finally, by simultaneous detection of HEV genomic RNAs and viral proteins in these substructures, we identified candidate HEV factories.

3.
Front Immunol ; 13: 773261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126390

RESUMO

Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota with a known role in immune regulation. Acetate, the major SCFA, is described to disseminate to distal organs such as lungs where it can arm sentinel cells, including alveolar macrophages, to fight against bacterial intruders. In the current study, we explored mechanisms through which acetate boosts macrophages to enhance their bactericidal activity. RNA sequencing analyses show that acetate triggers a transcriptomic program in macrophages evoking changes in metabolic process and immune effector outputs, including nitric oxide (NO) production. In addition, acetate enhances the killing activity of macrophages towards Streptococcus pneumoniae in an NO-dependent manner. Mechanistically, acetate improves IL-1ß production by bacteria-conditioned macrophages and the latter acts in an autocrine manner to promote NO production. Strikingly, acetate-triggered IL-1ß production was neither dependent of its cell surface receptor free-fatty acid receptor 2, nor of the enzymes responsible for its metabolism, namely acetyl-CoA synthetases 1 and 2. We found that IL-1ß production by acetate relies on NLRP3 inflammasome and activation of HIF-1α, the latter being triggered by enhanced glycolysis. In conclusion, we unravel a new mechanism through which acetate reinforces the bactericidal activity of alveolar macrophages.


Assuntos
Citotoxicidade Imunológica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamassomos/metabolismo , Macrófagos Alveolares/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções Pneumocócicas/etiologia , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/imunologia , Acetatos/farmacologia , Animais , Biomarcadores , Citotoxicidade Imunológica/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Glicólise , Interações Hospedeiro-Patógeno/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Consumo de Oxigênio , RNA Interferente Pequeno/genética
4.
Front Pharmacol ; 12: 789688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153750

RESUMO

Millions of people are still infected with hepatitis C virus (HCV) nowadays. Although recent antivirals targeting HCV proteins are very efficient, they are not affordable for many people infected with this virus. Therefore, new and more accessible treatments are needed. Several Ivorian medicinal plants are traditionally used to treat "yellow malaria", a nosological category including illness characterized by symptomatic jaundice such as hepatitis. Therefore, some of these plants might be active against HCV. An ethnobotanical survey in Côte d'Ivoire allowed us to select such medicinal plants. Those were first extracted with methanol and tested for their anti-HCV activity. The most active ones were further studied to specify their IC50 and to evaluate their toxicity in vitro. Greener solvents were tested to obtain extracts with similar activities. Following a phytochemical screening, tannins of the most active plants were removed before re-testing on HCV. Some of these tannins were identified by UPLC-MS and pure molecules were tested against HCV. Out of the fifteen Ivorian medicinal plants selected for their putative antiviral activities, Carapa procera DC. and Pericopsis laxiflora (Benth. ex Baker) Meeuwen were the most active against HCV (IC50: 0.71 and 0.23 µg/ml respectively) and not toxic for hepatic cells. Their crude extracts were rich in polyphenols, including tannins such as procyanidins A2 which is active against HCV. The same extracts without tannin lost their anti-HCV activity. Replacing methanol by hydro-ethanolic solvent led to tannins-rich extracts with similar antiviral activities, and higher than that of aqueous extracts.

5.
Viruses ; 11(2)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791409

RESUMO

Counting labeled cells, after immunofluorescence or expression of a genetically fluorescent reporter protein, is frequently used to quantify viral infection. However, this can be very tedious without a high content screening apparatus. For this reason, we have developed QuantIF, an ImageJ macro that automatically determines the total number of cells and the number of labeled cells from two images of the same field, using DAPI- and specific-stainings, respectively. QuantIF can automatically analyze hundreds of images, taking approximately one second for each field. It is freely available as supplementary data online at MDPI.com and has been developed using ImageJ, a free image processing program that can run on any computer with a Java virtual machine, which is distributed for Windows, Mac, and Linux. It is routinely used in our labs to quantify viral infections in vitro, but can easily be used for other applications that require quantification of labeled cells.


Assuntos
Células Cultivadas/virologia , Imunofluorescência , Processamento de Imagem Assistida por Computador/métodos , Software , Algoritmos , Enterovirus , Hepacivirus , Humanos , Vírus da Febre Amarela
6.
PLoS One ; 13(11): e0198226, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485282

RESUMO

The treatment of hepatitis C virus (HCV) infection by combination of direct acting antivirals (DAA), with different mode of action, has made substantial progress in the past few years. However, appearance of resistance and high cost of the therapy is still an obstacle in the achievement of the therapy, more specifically in developing countries. In this context, search for affordable antivirals with new mechanisms of action is still needed. Tea, after water, is the most popular drink worldwide. Polyphenols extracted from green tea have already shown anti-HCV activity as entry inhibitors. Here, three different theaflavins, theaflavin (TF1), theaflavin-3'-monogallate (TF2), and theaflavin-3-3'-digallate (TF3), which are major polyphenols from black tea, were tested against HCV in cell culture. The results showed that all theaflavins inhibit HCV infection in a dose-dependent manner in an early step of infection. Results obtained with HCV pseudotyped virions confirmed their activity on HCV entry and demonstrated their pan-genotypic action. No effect on HCV replication was observed by using HCV replicon. Investigation on the mechanism of action of black tea theaflavins showed that they act directly on the virus particle and are able to inhibit cell-to-cell spread. Combination study with inhibitors most widely used in anti-HCV treatment regimen demonstrated that TF3 exerts additive effect. In conclusion, theaflavins, that are present in high quantity in black tea, are new inhibitors of HCV entry and hold promise for developing in therapeutic arsenal for HCV infection.


Assuntos
Antioxidantes/farmacologia , Antivirais/farmacologia , Biflavonoides/farmacologia , Catequina/farmacologia , Hepacivirus/efeitos dos fármacos , Fígado/virologia , Polifenóis/farmacologia , Chá , Camellia sinensis , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Fígado/efeitos dos fármacos
7.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491159

RESUMO

Hepatitis C virus (HCV) infection causes 500,000 deaths annually, in association with end-stage liver diseases. Investigations of the HCV life cycle have widened the knowledge of virology, and here we discovered that two piperazinylbenzenesulfonamides inhibit HCV entry into liver cells. The entry of HCV into host cells is a complex process that is not fully understood but is characterized by multiple spatially and temporally regulated steps involving several known host factors. Through a high-content virus infection screening analysis with a library of 1,120 biologically active chemical compounds, we identified SB258585, an antagonist of serotonin receptor 6 (5-HT6), as a new inhibitor of HCV entry in liver-derived cell lines as well as primary hepatocytes. A functional characterization suggested a role for this compound and the compound SB399885, which share similar structures, as inhibitors of a late HCV entry step, modulating the localization of the coreceptor tight junction protein claudin-1 (CLDN1) in a 5-HT6-independent manner. Both chemical compounds induced an intracellular accumulation of CLDN1, reflecting export impairment. This regulation correlated with the modulation of protein kinase A (PKA) activity. The PKA inhibitor H89 fully reproduced these phenotypes. Furthermore, PKA activation resulted in increased CLDN1 accumulation at the cell surface. Interestingly, an increase of CLDN1 recycling did not correlate with an increased interaction with CD81 or HCV entry. These findings reinforce the hypothesis of a common pathway, shared by several viruses, which involves G-protein-coupled receptor-dependent signaling in late steps of viral entry.IMPORTANCE The HCV entry process is highly complex, and important details of this structured event are poorly understood. By screening a library of biologically active chemical compounds, we identified two piperazinylbenzenesulfonamides as inhibitors of HCV entry. The mechanism of inhibition was not through the previously described activity of these inhibitors as antagonists of serotonin receptor 6 but instead through modulation of PKA activity in a 5-HT6-independent manner, as proven by the lack of 5-HT6 in the liver. We thus highlighted the involvement of the PKA pathway in modulating HCV entry at a postbinding step and in the recycling of the tight junction protein claudin-1 (CLDN1) toward the cell surface. Our work underscores once more the complexity of HCV entry steps and suggests a role for the PKA pathway as a regulator of CLDN1 recycling, with impacts on both cell biology and virology.


Assuntos
Claudina-1/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Sulfonamidas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hepacivirus/fisiologia , Hepatócitos/virologia , Humanos , Isoquinolinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Tetraspanina 28/metabolismo , Junções Íntimas/metabolismo
8.
Cell Microbiol ; 20(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29112323

RESUMO

The hepatitis E virus (HEV) genome is a single-stranded, positive-sense RNA that encodes three proteins including the ORF1 replicase. Mechanisms of HEV replication in host cells are unclear, and only a few cellular factors involved in this step have been identified so far. Here, we used brefeldin A (BFA) that blocks the activity of the cellular Arf guanine nucleotide exchange factors GBF1, BIG1, and BIG2, which play a major role in reshuffling of cellular membranes. We showed that BFA inhibits HEV replication in a dose-dependent manner. The use of siRNA and Golgicide A identified GBF1 as a host factor critically involved in HEV replication. Experiments using cells expressing a mutation in the catalytic domain of GBF1 and overexpression of wild type GBF1 or a BFA-resistant GBF1 mutant rescuing HEV replication in BFA-treated cells, confirmed that GBF1 is the only BFA-sensitive factor required for HEV replication. We demonstrated that GBF1 is likely required for the activity of HEV replication complexes. However, GBF1 does not colocalise with the ORF1 protein, and its subcellular distribution is unmodified upon infection or overexpression of viral proteins, indicating that GBF1 is likely not recruited to replication sites. Together, our results suggest that HEV replication involves GBF1-regulated mechanisms.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Vírus da Hepatite E/crescimento & desenvolvimento , RNA Viral/biossíntese , Replicação Viral/fisiologia , Antivirais/farmacologia , Brefeldina A/farmacologia , Linhagem Celular Tumoral , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Hepatite E/patologia , Hepatite E/virologia , Vírus da Hepatite E/genética , Humanos , Piridinas/farmacologia , Quinolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Replicação Viral/efeitos dos fármacos
9.
J Pharm Pharmacol ; 69(8): 1041-1055, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28444868

RESUMO

OBJECTIVES: Eight extremophile plants from Tunisia were screened to find natural products with benefits in human health. METHODS: These plants were collected in different areas in Tunisia. Their methanolic extracts were evaluated for their total phenolic content and for their antiradical (DPPH), antimicrobial (on 35 bacteria and one yeast), antiviral (hepatitis C virus, HCV) and cytotoxic activity (against WI38 and J774 cell lines). The most active species were subjected to a bioguided fractionation. KEY FINDINGS: The screening revealed promising activity for four plants, but two species have both antiradical and antimicrobial activity: Juncus maritimus and Limonium virgatum. The rhizomes extract of J. maritimus showed the highest activity against HCV, a selective antibacterial activity against Streptococcus dysgalactiae, and a moderate antiradical activity which is due to luteolin isolated in one step by centrifugal partition chromatography. The stems' and leaves' extracts of L. virgatum were rich in polyphenols responsible for the antiradical activity. Also, Limonium extracts showed an antibacterial activity with a broad spectrum. CONCLUSIONS: Extremophile plants have proven to be a promising source for bioactive metabolites. They have a powerful antioxidant system highly influenced by biotic and abiotic factors and the ability to produce secondary metabolites with antimicrobial activity.


Assuntos
Descoberta de Drogas/tendências , Ecossistema , Extremófilos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antivirais/isolamento & purificação , Antivirais/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Descoberta de Drogas/métodos , Extremófilos/isolamento & purificação , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Tunísia/epidemiologia
10.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28179528

RESUMO

Hepatitis C virus (HCV) envelope glycoprotein complex is composed of E1 and E2 subunits. E2 is the receptor-binding protein as well as the major target of neutralizing antibodies, whereas the functions of E1 remain poorly defined. Here, we took advantage of the recently published structure of the N-terminal region of the E1 ectodomain to interrogate the functions of this glycoprotein by mutating residues within this 79-amino-acid region in the context of an infectious clone. The phenotypes of the mutants were characterized to determine the effects of the mutations on virus entry, replication, and assembly. Furthermore, biochemical approaches were also used to characterize the folding and assembly of E1E2 heterodimers. Thirteen out of 19 mutations led to viral attenuation or inactivation. Interestingly, two attenuated mutants, T213A and I262A, were less dependent on claudin-1 for cellular entry in Huh-7 cells. Instead, these viruses relied on claudin-6, indicating a shift in receptor dependence for these two mutants in the target cell line. An unexpected phenotype was also observed for mutant D263A which was no longer infectious but still showed a good level of core protein secretion. Furthermore, genomic RNA was absent from these noninfectious viral particles, indicating that the D263A mutation leads to the assembly and release of viral particles devoid of genomic RNA. Finally, a change in subcellular colocalization between HCV RNA and E1 was observed for the D263A mutant. This unique observation highlights for the first time cross talk between HCV glycoprotein E1 and the genomic RNA during HCV morphogenesis.IMPORTANCE Hepatitis C virus (HCV) infection is a major public health problem worldwide. It encodes two envelope proteins, E1 and E2, which play a major role in the life cycle of this virus. E2 has been extensively characterized, whereas E1 remains poorly understood. Here, we investigated E1 functions by using site-directed mutagenesis in the context of the viral life cycle. Our results identify unique phenotypes. Unexpectedly, two mutants clearly showed a shift in receptor dependence for cell entry, highlighting a role for E1 in modulating HCV particle interaction with a cellular receptor(s). More importantly, another mutant led to the assembly and release of viral particles devoid of genomic RNA. This unique phenotype was further characterized, and we observed a change in subcellular colocalization between HCV RNA and E1. This unique observation highlights for the first time cross talk between a viral envelope protein and genomic RNA during morphogenesis.


Assuntos
Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Internalização do Vírus , Linhagem Celular , Análise Mutacional de DNA , Hepacivirus/genética , Hepatócitos/virologia , Humanos , Mutação de Sentido Incorreto , Dobramento de Proteína , Multimerização Proteica , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética
11.
Mol Metab ; 6(1): 159-172, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123946

RESUMO

The hypothalamic arcuate nucleus (ARC) is a major integration center for energy and glucose homeostasis that responds to leptin. Resistance to leptin in the ARC is an important component of the development of obesity and type 2 diabetes. Recently, we showed that Endospanin1 (Endo1) is a negative regulator of the leptin receptor (OBR) that interacts with OBR and retains the receptor inside the cell, leading to a decreased activation of the anorectic STAT3 pathway. Endo1 is up-regulated in the ARC of high fat diet (HFD)-fed mice, and its silencing in the ARC of lean and obese mice prevents and reverses the development of obesity. OBJECTIVE: Herein we investigated whether decreased Endo1 expression in the hypothalamic ARC, associated with reduced obesity, could also ameliorate glucose homeostasis accordingly. METHODS: We studied glucose homeostasis in lean or obese mice silenced for Endo1 in the ARC via stereotactic injection of shRNA-expressing lentiviral vectors. RESULTS: We observed that despite being leaner, Endo1-silenced mice showed impaired glucose homeostasis on HFD. Mechanistically, we show that Endo1 interacts with p85, the regulatory subunit of PI3K, and mediates leptin-induced PI3K activation. CONCLUSIONS: Our results thus define Endo1 as an important hypothalamic integrator of leptin signaling, and its silencing differentially regulates the OBR-dependent functions.


Assuntos
Proteínas de Transporte/metabolismo , Obesidade/metabolismo , Receptores para Leptina/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/fisiologia , Proteínas de Transporte/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Leptina/metabolismo , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores para Leptina/fisiologia , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Virol ; 90(19): 8422-34, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27412600

RESUMO

UNLABELLED: Aminoquinolines and piperazines, linked or not, have been used successfully to treat malaria, and some molecules of this family also exhibit antiviral properties. Here we tested several derivatives of 4-aminoquinolines and piperazines for their activity against hepatitis C virus (HCV). We screened 11 molecules from three different families of compounds, and we identified anti-HCV activity in cell culture for six of them. Of these, we selected a compound (B5) that is currently ending clinical phase I evaluation for neurodegenerative diseases. In hepatoma cells, B5 inhibited HCV infection in a pangenotypic and dose-dependent manner, and its antiviral activity was confirmed in primary hepatocytes. B5 also inhibited infection by pseudoparticles expressing HCV envelope glycoproteins E1 and E2, and we demonstrated that it affects a postattachment stage of the entry step. Virus with resistance to B5 was selected by sequential passage in the presence of the drug, and reverse genetics experiments indicated that resistance was conferred mainly by a single mutation in the putative fusion peptide of E1 envelope glycoprotein (F291I). Furthermore, analyses of the effects of other closely related compounds on the B5-resistant mutant suggest that B5 shares a mode of action with other 4-aminoquinoline-based molecules. Finally, mice with humanized liver that were treated with B5 showed a delay in the kinetics of the viral infection. In conclusion, B5 is a novel interesting anti-HCV molecule that could be used to decipher the early steps of the HCV life cycle. IMPORTANCE: In the last 4 years, HCV therapy has been profoundly improved with the approval of direct-acting antivirals in clinical practice. Nevertheless, the high costs of these drugs limit access to therapy in most countries. The present study reports the identification and characterization of a compound (B5) that inhibits HCV propagation in cell culture and is currently ending clinical phase I evaluation for neurodegenerative diseases. This molecule inhibits the HCV life cycle by blocking virus entry. Interestingly, after selection of drug-resistant virus, a resistance mutation in the putative fusion peptide of E1 envelope glycoprotein was identified, indicating that B5 could be used to further investigate the fusion mechanism. Furthermore, mice with humanized liver treated with B5 showed a delay in the kinetics of the viral infection. In conclusion, B5 is a novel interesting anti-HCV molecule that could be used to decipher the early steps of the HCV life cycle.


Assuntos
Aminoquinolinas/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Aminoquinolinas/química , Aminoquinolinas/isolamento & purificação , Animais , Antivirais/química , Antivirais/isolamento & purificação , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral , Hepatite C/tratamento farmacológico , Hepatócitos/virologia , Humanos , Camundongos , Camundongos SCID , Modelos Moleculares , Estrutura Molecular , Mutação de Sentido Incorreto , Genética Reversa , Resultado do Tratamento , Proteínas do Envelope Viral/genética , Internalização do Vírus/efeitos dos fármacos
13.
PLoS Pathog ; 12(3): e1005476, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26939061

RESUMO

The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV), a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family.


Assuntos
Vírus da Diarreia Viral Bovina/ultraestrutura , Proteínas do Envelope Viral/ultraestrutura , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/ultraestrutura , Bovinos , Linhagem Celular , Microscopia Crioeletrônica , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/imunologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas do Envelope Viral/genética , Vírion
14.
Arch Virol ; 161(5): 1169-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26843184

RESUMO

In this study, we examined the antiviral properties of Khaya grandifoliola C.DC (Meliaceae) on the hepatitis C virus (HCV) life cycle in vitro and identified some of the chemical constituents contained in the fraction with the most antiviral activity. Dried bark powder was extracted by maceration in a methylene chloride/methanol (MCM) system (50:50; v/v) and separated on silica gel by flash chromatography. Infection and replication rates in Huh-7 cells were investigated by luciferase reporter assay and indirect immunofluorescence assay using subgenomic replicons, HCV pseudotyped particles, and cell-culture-derived HCV (HCVcc), respectively. Cell viability was assessed by MTT assay, and cellular gene expression was analysed by qRT-PCR. The chemical composition of the fraction with the most antiviral activity was analysed by coupled gas chromatography and mass spectrometry (GC-MS). Five fractions of different polarities (F0-F100) were obtained from the MCM extract. One fraction (KgF25) showed the strongest antiviral effect on LucUbiNeoET replicons at nontoxic concentrations. Tested at 100 µg/mL, KgF25 had a high inhibitory effect on HCV replication, comparable to that of 0.01 µM daclatasvir or 1 µM telaprevir. This fraction also inhibited HCVcc infection by mostly targeting the entry step. KgF25 inhibited HCV entry in a pan-genotypic manner by directly inactivating free viral particles. Its antiviral effects were mediated by the transcriptional upregulation of the haem oxygenase-1 gene and interferon antiviral response. Three constituents, namely, benzene, 1,1'-(oxydiethylidene)bis (1), carbamic acid, (4-methylphenyl)-, 1-phenyl (2), and 6-phenyl, 4-(1'-oxyethylphenyl) hexene (3), were identified from the active fraction KgF25 by GC-MS. Khaya grandifoliola contains ingredients capable of acting on different steps of the HCV life cycle.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Meliaceae , Casca de Planta , Extratos Vegetais/farmacologia , Antivirais/isolamento & purificação , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Cromatografia em Gel/métodos , Relação Dose-Resposta a Droga , Imunofluorescência , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Neoplasias Hepáticas/metabolismo , Meliaceae/química , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
Cell Microbiol ; 18(8): 1121-33, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26814617

RESUMO

GBF1 is a host factor required for hepatitis C virus (HCV) replication. GBF1 functions as a guanine nucleotide exchange factor for G-proteins of the Arf family, which regulate membrane dynamics in the early secretory pathway and the metabolism of cytoplasmic lipid droplets. Here we established that the Arf-guanine nucleotide exchange factor activity of GBF1 is critical for its function in HCV replication, indicating that it promotes viral replication by activating one or more Arf family members. Arf involvement was confirmed with the use of two dominant negative Arf1 mutants. However, siRNA-mediated depletion of Arf1, Arf3 (class I Arfs), Arf4 or Arf5 (class II Arfs), which potentially interact with GBF1, did not significantly inhibit HCV infection. In contrast, the simultaneous depletion of both Arf4 and Arf5, but not of any other Arf pair, imposed a significant inhibition of HCV infection. Interestingly, the simultaneous depletion of both Arf4 and Arf5 had no impact on the activity of the secretory pathway and induced a compaction of the Golgi and an accumulation of lipid droplets. A similar phenotype of lipid droplet accumulation was also observed when GBF1 was inhibited by brefeldin A. In contrast, the simultaneous depletion of both Arf1 and Arf4 resulted in secretion inhibition and Golgi scattering, two actions reminiscent of GBF1 inhibition. We conclude that GBF1 could regulate different metabolic pathways through the activation of different pairs of Arf proteins.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , Replicação Viral , Linhagem Celular Tumoral , Hepatite C/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Gotículas Lipídicas , Domínios Proteicos , Transporte Proteico , Via Secretória
16.
J Virol ; 89(19): 10053-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202241

RESUMO

UNLABELLED: Despite the validation of direct-acting antivirals for hepatitis C treatment, the discovery of new compounds with different modes of action may still be of importance for the treatment of special patient populations. We recently identified a natural molecule, epigallocatechin-3-gallate (EGCG), as an inhibitor of hepatitis C virus (HCV) targeting the viral particle. The aim of this work was to discover new natural compounds with higher anti-HCV activity than that of EGCG and determine their mode of action. Eight natural molecules with structure similarity to EGCG were selected. HCV JFH1 in cell culture and HCV pseudoparticle systems were used to determine the antiviral activity and mechanism of action of the compounds. We identified delphinidin, a polyphenol belonging to the anthocyanidin family, as a new inhibitor of HCV entry. Delphinidin inhibits HCV entry in a pangenotypic manner by acting directly on the viral particle and impairing its attachment to the cell surface. Importantly, it is also active against HCV in primary human hepatocytes, with no apparent cytotoxicity and in combination with interferon and boceprevir in cell culture. Different approaches showed that neither aggregation nor destruction of the particle occurred. Cryo-transmission electron microscopy observations of HCV pseudoparticles treated with delphinidin or EGCG showed a bulge on particles that was not observed under control conditions. In conclusion, EGCG and delphinidin inhibit HCV entry by a new mechanism, i.e., alteration of the viral particle structure that impairs its attachment to the cell surface. IMPORTANCE: In this article, we identify a new inhibitor of hepatitis C virus (HCV) infection, delphinidin, that prevents HCV entry. This natural compound, a plant pigment responsible for the blue-purple color of flowers and berries, belongs to the flavonoid family, like the catechin EGCG, the major component present in green tea extract, which is also an inhibitor of HCV entry. We studied the mode of action of these two compounds against HCV and demonstrated that they both act directly on the virus, inducing a bulging of the viral envelope. This deformation might be responsible for the observed inhibition of virus attachment to the cell surface. The discovery of such HCV inhibitors with an unusual mode of action is important to better characterize the mechanism of HCV entry into hepatocytes and to help develop a new class of HCV entry inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Polifenóis/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antocianinas/administração & dosagem , Antocianinas/farmacologia , Antivirais/administração & dosagem , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular , Microscopia Crioeletrônica , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Hepacivirus/ultraestrutura , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Interferon-alfa/administração & dosagem , Polifenóis/administração & dosagem , Prolina/administração & dosagem , Prolina/análogos & derivados
17.
J Virol ; 89(16): 8346-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041282

RESUMO

UNLABELLED: In our study, we characterized the effect of monensin, an ionophore that is known to raise the intracellular pH, on the hepatitis C virus (HCV) life cycle. We showed that monensin inhibits HCV entry in a pangenotypic and dose-dependent manner. Monensin induces an alkalization of intracellular organelles, leading to an inhibition of the fusion step between viral and cellular membranes. Interestingly, we demonstrated that HCV cell-to-cell transmission is dependent on the vesicular pH. Using the selective pressure of monensin, we selected a monensin-resistant virus which has evolved to use a new entry route that is partially pH and clathrin independent. Characterization of this mutant led to the identification of two mutations in envelope proteins, the Y297H mutation in E1 and the I399T mutation in hypervariable region 1 (HVR1) of E2, which confer resistance to monensin and thus allow HCV to use a pH-independent entry route. Interestingly, the I399T mutation introduces an N-glycosylation site within HVR1 and increases the density of virions and their sensitivity to neutralization with anti-apolipoprotein E (anti-ApoE) antibodies, suggesting that this mutation likely induces conformational changes in HVR1 that in turn modulate the association with ApoE. Strikingly, the I399T mutation dramatically reduces HCV cell-to-cell spread. In summary, we identified a mutation in HVR1 that overcomes the vesicular pH dependence, modifies the biophysical properties of particles, and drastically reduces cell-to-cell transmission, indicating that the regulation by HVR1 of particle association with ApoE might control the pH dependence of cell-free and cell-to-cell transmission. Thus, HVR1 and ApoE are critical regulators of HCV propagation. IMPORTANCE: Although several cell surface proteins have been identified as entry factors for hepatitis C virus (HCV), the precise mechanisms regulating its transmission to hepatic cells are still unclear. In our study, we used monensin A, an ionophore that is known to raise the intracellular pH, and demonstrated that cell-free and cell-to-cell transmission pathways are both pH-dependent processes. We generated monensin-resistant viruses that displayed different entry routes and biophysical properties. Thanks to these mutants, we highlighted the importance of hypervariable region 1 (HVR1) of the E2 envelope protein for the association of particles with apolipoprotein E, which in turn might control the pH dependency of cell-free and cell-to-cell transmission.


Assuntos
Hepacivirus/fisiologia , Ionóforos/farmacologia , Monensin/farmacologia , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Farmacorresistência Viral/genética , Técnica Indireta de Fluorescência para Anticorpo , Hepacivirus/genética , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Mutação de Sentido Incorreto/genética , Testes de Neutralização , Proteínas Virais/metabolismo
18.
J Gen Virol ; 96(Pt 2): 311-321, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25351725

RESUMO

Core plays a critical role during hepatitis C virus (HCV) assembly, not only as a structural component of the virion, but also as a regulator of the formation of assembly sites. In this study, we observed that core is expressed later than other HCV proteins in a single viral cycle assay, resulting in a relative increase of core expression during a late step of the viral life cycle. This delayed core expression results from an increase of core half-life, indicating that core is initially degraded and is stabilized at a late step of the HCV life cycle. Stabilization-mediated delayed kinetics of core expression were also observed using heterologous expression systems. Core stabilization did not depend on its interaction with non-structural proteins or lipid droplets but was correlated with its expression levels and its oligomerization status. Therefore in the course of a HCV infection, core stabilization is likely to occur when the prior amplification of the viral genome during an initial replication step allows core to be synthesized at higher levels as a stable protein, during the assembly step of the viral life cycle.


Assuntos
Regulação Viral da Expressão Gênica , Hepacivirus/fisiologia , Proteínas do Core Viral/biossíntese , Replicação Viral , Linhagem Celular , Perfilação da Expressão Gênica , Hepacivirus/genética , Hepatócitos/virologia , Humanos , Estabilidade Proteica , Fatores de Tempo , Proteínas do Core Viral/genética
19.
Biology (Basel) ; 3(4): 892-921, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25517881

RESUMO

Hepatitis C Virus (HCV) infects over 150 million people worldwide. In most cases HCV infection becomes chronic, causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. HCV affects the cholesterol homeostasis and at the molecular level, every step of the virus life cycle is intimately connected to lipid metabolism. In this review, we present an update on the lipids and apolipoproteins that are involved in the HCV infectious cycle steps: entry, replication and assembly. Moreover, the result of the assembly process is a lipoviroparticle, which represents a peculiarity of hepatitis C virion. This review illustrates an example of an intricate virus-host interaction governed by lipid metabolism.

20.
Bioorg Med Chem Lett ; 24(17): 4162-5, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25103601

RESUMO

Preventing viral entry into cells is a recognized approach for HIV therapy and has attracted attention for use against the hepatitis C virus (HCV). Recent reports described the activity of (-)-epigallocatechin gallate (EGCG) as an inhibitor of HCV entry with modest potency. EGCG is a polyphenolic natural product with a wide range of biological activity and unfavorable pharmaceutical properties. In an attempt to identify more drug-like EGCG derivatives with improved efficacy as HCV entry inhibitors, we initiated structure-activity investigations using semi-synthetic and synthetic EGCG analogs. The data show that there are multiple regions in the EGCG structure that contribute to activity. The gallate ester portion of the molecule appears to be of particular importance as a 3,4-difluoro analog of EGCG enhanced potency. This derivative and other active compounds were shown not to be cytotoxic in Huh-7 cell culture. These data suggest that more potent, non-cytotoxic EGCG analogs can be prepared in an attempt to identify more drug-like candidates to treat HCV infection by this mechanism.


Assuntos
Antivirais/química , Antivirais/farmacologia , Catequina/análogos & derivados , Hepacivirus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Antivirais/síntese química , Catequina/síntese química , Catequina/química , Catequina/farmacologia , Sobrevivência Celular , Relação Dose-Resposta a Droga , Hepacivirus/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA