RESUMO
The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin produced by pathogenic bacteria causing major foodborne diseases worldwide. CDT activates the DNA Damage Response and modulates the host immune response, but the precise relationship between these outcomes has not been addressed so far. Here, we show that chronic exposure to CDT in HeLa cells or mouse embryonic fibroblasts promotes a strong type I interferon (IFN) response that depends on the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) through the recognition of micronuclei. Indeed, despite active cell cycle checkpoints and in contrast to other DNA damaging agents, cells exposed to CDT reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation in daughter cells. These mitotic phenotypes are observed with CDT from various origins and in cancer or normal cell lines. Finally, we show that CDT exposure in immortalized normal colonic epithelial cells is associated to cGAS protein loss and low type I IFN response, implying that CDT immunomodulatory function may vary depending on tissue and cell type. Thus, our results establish a direct link between CDT-induced DNA damage, genetic instability and the cellular immune response that may be relevant in the context of natural infection associated to chronic inflammation or carcinogenesis.
Assuntos
Toxinas Bacterianas/farmacologia , Interferon Tipo I/metabolismo , Nucleotidiltransferases/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Interferon Tipo I/genética , Camundongos , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genéticaRESUMO
To identify novel tumor-associated proteins, we analyzed the protein expression patterns from experimental hepatocellular carcinoma (HCC) that were induced using hepatocarcinogenesis models in rats. Rats were subjected to two previously described protocols of hepatocarcinogenesis using diethylnitrosamine as a carcinogen: the alternative Solt-Farber (aS&F) protocol, which induces HCC within 9 months, and Schiffer's model, which induces cirrhosis and multifocal HCC within 18 weeks. The patterns of protein expression from tumors and normal liver tissue were examined by SDS-PAGE and the bands identified at 33-34 kDa were analyzed by mass spectrometry. The prostaglandin reductase 1 (PTGR1) showed the highest number of peptides, with a confidence of level >99%. The increased expression of PTGR1 in tumors was confirmed in these two models by Western blotting and by increase in alkenal/one oxidoreductase activity (25-fold higher than normal liver). In addition, the gene expression level of Ptgr1, as measured by qRT-PCR, was increased during cancer development in a time-dependent manner (200-fold higher than normal liver). Furthermore, PTGR1 was detected in the cytoplasm of neoplastic cells in rat tumors and in 12 human HCC cases by immunohistochemistry. These analyses were performed by comparing the expression of PTGR1 to that of two well-known markers of hepatocarcinoma, Glutathione S-transferase pi 1 (GSTP1) in rats and glypican-3 in humans. The increased expression and activity of PTGR1 in liver carcinogenesis encourage further research aimed at understanding the metabolic role of PTGR1 in HCC and its potential application for human cancer diagnosis and treatment.
Assuntos
Oxirredutases do Álcool/biossíntese , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/biossíntese , Oxirredutases do Álcool/genética , Animais , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , RatosRESUMO
For several decades, people have been in contact with bisphenol A (BPA) primarily through their diet. Nowadays it is gradually replaced by an analogue, bisphenol S (BPS). In this study, we compared the effects of these two bisphenols in parallel with the positive control diethylstilbestrol (DES) on different hepatocyte cell lines. Using a cellular impedance system we have shown that BPS is less cytotoxic than BPA in acute and chronic conditions. We have also demonstrated that, contrary to BPA, BPS is not able to induce an increase in intracellular lipid and does not activate the PXR receptor which is known to be involved in part, in this process. In parallel, it failed to modulate the expression of CYP3A4 and CYP2B6, the drug transporter ABCB1 and other lipid metabolism genes (FASN, PLIN). However, it appears to have a weak effect on GSTA4 protein expression and on the Erk1/2 pathway. In conclusion, in contrast to BPA, BPS does not appear to induce the metabolic syndrome that may lead to non-alcoholic fatty liver disease (NAFLD), in vitro. Although we have to pay special attention to BPS, its use could be less dangerous concerning this toxicological endpoint for human health.
Assuntos
Compostos Benzidrílicos/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/patologia , Fenóis/toxicidade , Sulfonas/toxicidade , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Perilipina-1 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptor de Pregnano X , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismoRESUMO
Among disruptions induced by oxidative stress, modifications of proteins, particularly irreversible carbonylation, are associated with the development of several diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Carbonylation of proteins can occur directly or indirectly through the adduction of lipid oxidation products. In this study, three classical and easy-to-perform techniques to detect direct or indirect carbonylation of proteins were compared. A model protein apomyoglobin and a complex mixture of rat liver cytosolic proteins were exposed to cumene hydroperoxide oxidation or adduction to the lipid peroxidation product 4-hydroxynonenal in order to test direct or indirect carbonylation, respectively. The technique using a specific anti-4-hydroxynonenal-histidine adduct antibody was effective to detect in vitro modification of model apomyoglobin and cytosolic proteins by 4-hydroxynonenal but not by direct carbonylation which was achieved by techniques using biotin-coupled hydrazide or dinitrophenylhydrazine derivatization of carbonyls. Sequential use of these methods enabled the detection of both direct and indirect carbonyl modification in proteins, although constitutively biotinylated proteins were detected by biotin-hydrazide. Although rather classical and efficient, methods for carbonyl detection on proteins in oxidative stress studies may be biased by some artifactual detections and complicated by proteins multimerizations. The use of more and more specific available antibodies is recommended to complete detection of lipid peroxidation product adducts on proteins.
Assuntos
Carbonilação Proteica/fisiologia , Proteínas/química , Proteínas/metabolismo , Aldeídos/química , Animais , Anticorpos , Biotina/análogos & derivados , Hidrazinas/química , Masculino , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar , Estreptavidina/químicaRESUMO
The purpose of this investigation was to evaluate the possible influence of a mixture of pesticides on medium-term carcinogenesis using improved hepatocarcinogenesis protocols. We performed a 12 commercially available pesticides combination with alachlor, atrazine, carbofuran, chlorpyrifos, diazinon, dicofol, endosulfan, iprodione, mancozeb, maneb, procymidone and rotenone. The mixture was given at 1-fold and 10-fold the acceptable daily intake (ADI) level in a set of Solt-Farber-derived protocols involving diethylnitrosamine, 2-acetylaminofluorene treatments and a partial hepatectomy. Co-carcinogenic effect and promoting activity were evaluated using gamma-glutamyl transpeptidase (GGT) positive altered hepatocyte foci, as well, protein and mRNA levels of glutathione S-transferase P (GSTP) in liver extracts as molecular biomarkers of carcinogenic effects. The pesticide treatments when compared to vehicle treatments always produced the same number of hepatocyte lesions and an equal GSTP expression on liver extracts independently of carcinogenic-protocol utilized. On this base, we concluded that the pesticide mixture evaluated in this report does not have tumor promoting activity or co-carcinogenic effect in the rat medium-term liver carcinogenesis. Altogether these data contribute to the confidence that the ADI represents a safe intake level to mixture of pesticides at dietary exposure.
Assuntos
Carcinógenos/toxicidade , Neoplasias Hepáticas Experimentais/induzido quimicamente , Praguicidas/toxicidade , Animais , Western Blotting , Cocarcinogênese , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hepatectomia , Neoplasias Hepáticas Experimentais/enzimologia , Masculino , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , gama-Glutamiltransferase/metabolismoRESUMO
Sulforaphane (SFN) is a natural micronutrient found in cruciferous vegetables that has been shown to possess antitumoral properties in carcinogen-treated rats. In vitro, SFN regulates phase II enzymes, cell cycle, and apoptosis. In the present study, we investigated the relationship between SFN induction of apoptosis and cell cycle arrest in HT29 human colon carcinoma cells. In previously published data, a significant increase in the G2/M phase of the cell cycle has been observed in SFN-treated cells that was associated with increased cyclin B1 protein levels. In the present study, our results show that SFN induced p21 expression. Moreover, preincubation of HT29 cells with roscovitine, a specific cdc2 kinase inhibitor, blocked the G2/M phase accumulation of HT29 cells treated with SFN and abolished its apoptotic effect (22.2 +/- 4 of floating cells in SFN-treated cells vs. 6.55 +/- 2 in cells treated with both SFN and roscovitine). These results suggest that the cdc2 kinase could be a key target for SFN in the regulation of G2/M block and apoptosis. Moreover, in SFN-treated cells the retinoblastoma tumor suppressor protein (Rb) is highly phosphorylated. Inhibition of the cdc2 kinase by roscovitine did not change the phosphorylation status of Rb in SFN-treated cells, suggesting that this cyclin-dependent kinase may not be involved. In our study, we did not observe any significant change in the proteasomal activity between control and SFN-treated cells. Moreover, inhibition of proteasomal activity through the use of MG132 diminished SFN-induced HT29 cell death, suggesting that the apoptotic effect of SFN requires a functional proteasome-dependent degradation system. In summary, we have elucidated part of the mechanism of action of SFN in the concomitant regulation of intestinal cell growth and death.