Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 122(1): 408-18, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22156199

RESUMO

In hematologic diseases, such as sickle cell disease (SCD) and hemolytic uremic syndrome (HUS), pathological biophysical interactions among blood cells, endothelial cells, and soluble factors lead to microvascular occlusion and thrombosis. Here, we report an in vitro "endothelialized" microfluidic microvasculature model that recapitulates and integrates this ensemble of pathophysiological processes. Under controlled flow conditions, the model enabled quantitative investigation of how biophysical alterations in hematologic disease collectively lead to microvascular occlusion and thrombosis. Using blood samples from patients with SCD, we investigated how the drug hydroxyurea quantitatively affects microvascular obstruction in SCD, an unresolved issue pivotal to understanding its clinical efficacy in such patients. In addition, we demonstrated that our microsystem can function as an in vitro model of HUS and showed that shear stress influences microvascular thrombosis/obstruction and the efficacy of the drug eptifibatide, which decreases platelet aggregation, in the context of HUS. These experiments establish the versatility and clinical relevance of our microvasculature-on-a-chip model as a biophysical assay of hematologic pathophysiology as well as a drug discovery platform.


Assuntos
Doenças Hematológicas/etiologia , Técnicas Analíticas Microfluídicas , Microvasos/patologia , Microvasos/fisiopatologia , Trombose/etiologia , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/patologia , Anemia Falciforme/fisiopatologia , Eptifibatida , Doenças Hematológicas/tratamento farmacológico , Doenças Hematológicas/patologia , Doenças Hematológicas/fisiopatologia , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/patologia , Síndrome Hemolítico-Urêmica/fisiopatologia , Hemorreologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidroxiureia/farmacologia , Técnicas In Vitro , Microscopia de Fluorescência , Microvasos/efeitos dos fármacos , Modelos Cardiovasculares , Peptídeos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Trombose/tratamento farmacológico , Trombose/patologia , Trombose/fisiopatologia
2.
Biophys J ; 88(3): 2022-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15613637

RESUMO

Dynamic force spectroscopy is rapidly becoming a standard biophysical technique. Significant advances in the methods of analysis of force data have resulted in ever more complex systems being studied. The use of cloning systems to produce homologous tandem repeats rather than the use of endogenous multidomain proteins has facilitated these developments. What is poorly addressed are the physical properties of these constructed polyproteins. Are the properties of the individual domains in the construct independent of one another or attenuated by adjacent domains? We present data for a construct of eight fibronectin type III domains from the human form of tenascin that exhibits approximately 1 kcal mol(-1) increase in stability compared to the monomer. This effect is salt and pH dependent, suggesting that the stabilization results from electrostatic interactions, possibly involving charged residues at the interfaces of the domains. Kinetic analysis shows that this stabilization reflects a slower unfolding rate. Clearly, if domain-domain interactions affect the unfolding force, this will have implications for the comparison of absolute forces between types of domains. Mutants of the tenascin 8-mer construct exhibit the same change in stability as that observed for the corresponding mutation in the monomer. And when Phi-values are calculated for the 8-mer construct, the pattern is similar to that observed for the monomer. Therefore, mutational analyses to resolve mechanical unfolding pathways appear valid. Importantly, we show that interactions between the domains may be masked by changes in experimental conditions.


Assuntos
Substâncias Macromoleculares/química , Micromanipulação/métodos , Microscopia de Força Atômica/métodos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Poliproteínas/química , Poliproteínas/ultraestrutura , Engenharia de Proteínas/métodos , Tenascina/química , Tenascina/ultraestrutura , Biofísica/métodos , Elasticidade , Humanos , Concentração de Íons de Hidrogênio , Cinética , Substâncias Macromoleculares/análise , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/genética , Poliproteínas/análise , Poliproteínas/genética , Conformação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestrutura , Estresse Mecânico , Tenascina/análise , Tenascina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA