Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
EBioMedicine ; 102: 105060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490102

RESUMO

BACKGROUND: In preclinical studies, the use of double allogeneic grafts has shown promising results in promoting tissue revascularization, reducing infarct size, preventing adverse remodelling and fibrosis, and ultimately enhancing cardiac function. Building upon these findings, the safety of PeriCord, an engineered tissue graft consisting of a decellularised pericardial matrix and umbilical cord Wharton's jelly mesenchymal stromal cells, was evaluated in the PERISCOPE Phase I clinical trial (NCT03798353), marking its first application in human subjects. METHODS: This was a double-blind, single-centre trial that enrolled patients with non-acute myocardial infarction eligible for surgical revascularization. Seven patients were implanted with PeriCord while five served as controls. FINDINGS: Patients who received PeriCord showed no adverse effects during post-operative phase and one-year follow-up. No significant changes in secondary outcomes, such as quality of life or cardiac function, were found in patients who received PeriCord. However, PeriCord did modulate the kinetics of circulating monocytes involved in post-infarction myocardial repair towards non-classical inflammation-resolving macrophages, as well as levels of monocyte chemoattractants and the prognostic marker Meteorin-like in plasma following treatment. INTERPRETATION: In summary, the PeriCord graft has exhibited a safe profile and notable immunomodulatory properties. Nevertheless, further research is required to fully unlock its potential as a platform for managing inflammatory-related pathologies. FUNDING: This work was supported in part by grants from MICINN (SAF2017-84324-C2-1-R); Instituto de Salud Carlos III (ICI19/00039 and Red RICORS-TERAV RD21/0017/0022, and CIBER Cardiovascular CB16/11/00403) as a part of the Plan Nacional de I + D + I, and co-funded by ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) and AGAUR (2021-SGR-01437).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Geleia de Wharton , Humanos , Qualidade de Vida , Coração , Cordão Umbilical
2.
Cell Mol Life Sci ; 80(8): 238, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535170

RESUMO

Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.


Assuntos
Doença de Huntington , Células-Tronco Neurais , Humanos , Animais , Camundongos , Doença de Huntington/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Corpo Estriado/metabolismo , Diferenciação Celular , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
3.
Biomed Pharmacother ; 158: 114061, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495661

RESUMO

Fibrosis is present in an important proportion of myocardial disorders. Injury activates cardiac fibroblasts, which deposit excess extracellular matrix, increasing tissue stiffness, impairing cardiac function, and leading to heart failure. Clinical therapies that directly target excessive fibrosis are limited, and more effective treatments are needed. Immunotherapy based on chimeric antigen receptor (CAR) T cells is a novel technique that redirects T lymphocytes toward specific antigens to eliminate the target cells. It is currently used in haematological cancers but has demonstrated efficacy in mouse models of hypertensive cardiac fibrosis, with activated fibroblasts as the target cells. CAR T cell therapy is associated with significant toxicities, but CAR natural killer cells can overcome efficacy and safety limitations. The use of CAR immunotherapy offers a potential alternative to current therapies for fibrosis reduction and restoration of cardiac function in patients with myocardial fibrosis.


Assuntos
Cardiomiopatias , Neoplasias , Receptores de Antígenos Quiméricos , Animais , Camundongos , Imunoterapia/métodos , Linfócitos T , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Cardiomiopatias/tratamento farmacológico , Fibrose , Neoplasias/tratamento farmacológico
4.
Front Cardiovasc Med ; 9: 983001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204562

RESUMO

Objective: To assess the arrhythmic safety profile of the adipose graft transposition procedure (AGTP) and its electrophysiological effects on post-myocardial infarction (MI) scar. Background: Myocardial repair is a promising treatment for patients with MI. The AGTP is a cardiac reparative therapy that reduces infarct size and improves cardiac function. The impact of AGTP on arrhythmogenesis has not been addressed. Methods: MI was induced in 20 swine. Contrast-enhanced magnetic resonance (ce-MRI), electrophysiological study (EPS), and left-ventricular endocardial high-density mapping were performed 15 days post-MI. Animals were randomized 1:1 to AGTP or sham-surgery group and monitored with ECG-Holter. Repeat EPS, endocardial mapping, and ce-MRI were performed 30 days post-intervention. Myocardial SERCA2, Connexin-43 (Cx43), Ryanodine receptor-2 (RyR2), and cardiac troponin-I (cTnI) gene and protein expression were evaluated. Results: The AGTP group showed a significant reduction of the total infarct scar, border zone and dense scar mass by ce-MRI (p = 0.04), and a decreased total scar and border zone area in bipolar voltage mapping (p < 0.001). AGTP treatment significantly reduced the area of very-slow conduction velocity (<0.2 m/s) (p = 0.002), the number of deceleration zones (p = 0.029), and the area of fractionated electrograms (p = 0.005). No differences were detected in number of induced or spontaneous ventricular arrhythmias at EPS and Holter-monitoring. SERCA2, Cx43, and RyR2 gene expression were decreased in the infarct core of AGTP-treated animals (p = 0.021, p = 0.018, p = 0.051, respectively). Conclusion: AGTP is a safe reparative therapy in terms of arrhythmic risk and provides additional protective effect against adverse electrophysiological remodeling in ischemic heart disease.

5.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076936

RESUMO

Mesenchymal stromal cell-derived extracellular vesicles (MSC-EV) are widely considered as a cell-free therapeutic alternative to MSC cell administration, due to their immunomodulatory and regenerative properties. However, the interaction mechanisms between EV and target cells are not fully understood. The surface glycans could be key players in EV-cell communication, being specific molecular recognition patterns that are still little explored. In this study, we focused on the role of N-glycosylation of MSC-EV as mediators of MSC-EV and endothelial cells' interaction for subsequent EV uptake and the induction of cell migration and angiogenesis. For that, EV from immortalized Wharton's Jelly MSC (iWJ-MSC-EV) were isolated by size exclusion chromatography (SEC) and treated with the glycosidase PNGase-F in order to remove wild-type N-glycans. Then, CFSE-labelled iWJ-MSC-EV were tested in the context of in vitro capture, agarose-spot migration and matrigel-based tube formation assays, using HUVEC. As a result, we found that the N-glycosylation in iWJ-MSC-EV is critical for interaction with HUVEC cells. iWJ-MSC-EV were captured by HUVEC, stimulating their tube-like formation ability and promoting their recruitment. Conversely, the removal of N-glycans through PNGase-F treatment reduced all of these functional activities induced by native iWJ-MSC-EV. Finally, comparative lectin arrays of iWJ-MSC-EV and PNGase-F-treated iWJ-MSC-EV found marked differences in the surface glycosylation pattern, particularly in N-acetylglucosamine, mannose, and fucose-binding lectins. Taken together, our results highlight the importance of N-glycans in MSC-EV to permit EV-cell interactions and associated functions.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Comunicação Celular , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/metabolismo , Polissacarídeos/metabolismo
6.
Theranostics ; 12(10): 4656-4670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832072

RESUMO

Rationale: Extracellular vesicles (EVs) from mesenchymal stromal cell (MSC) are a potential therapy for cardiac healing after myocardial infarction (MI). Nevertheless, neither their efficient administration nor therapeutic mechanisms are fully elucidated. Here, we evaluate the preclinical efficacy of a tissue engineering approach to locally deliver porcine cardiac adipose tissue MSC-EV (cATMSC-EV) in an acute MI pig model. Methods: After MI by permanent ligation of the coronary artery, pigs (n = 24) were randomized to Untreated or treated groups with a decellularised pericardial scaffold filled with peptide hydrogel and cATMSC-EV purified by size exclusion chromatography (EV-Treated group) or buffer (Control group), placed over the post-infarcted myocardium. Results: After 30 days, cardiac MRI showed an improved cardiac function in EV-Treated animals, with significantly higher right ventricle ejection fraction (+20.8% in EV-Treated; p = 0.026), and less ventricle dilatation, indicating less myocardial remodelling. Scar size was reduced, with less fibrosis in the distal myocardium (-42.6% Col I in EV-Treated vs Untreated; p = 0.03), a 2-fold increase in vascular density (EV-Treated; p = 0.019) and less CCL2 transcription in the infarct core. EV-treated animals had less macrophage infiltration in the infarct core (-31.7% of CD163+ cells/field in EV-Treated; p = 0.026), but 5.8 times more expressing anti-inflammatory CD73 (p = 0.015). Systemically, locally delivered cATMSC-EV also triggered a systemic effect, doubling the circulating IL-1ra (p = 0.01), and reducing the PBMC rush 2d post-MI, the TNFα and GM-CSF levels at 30d post-MI, and modulating the CD73+ and CCR2+ monocyte populations, related to immunomodulation and fibrosis modulation. Conclusions: These results highlight the potential of cATMSC-EV in modulating hallmarks of ischemic injury for cardiac repair after MI.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Modelos Animais de Doenças , Fibrose , Imunomodulação , Leucócitos Mononucleares , Infarto do Miocárdio/patologia , Miocárdio/patologia , Suínos , Remodelação Ventricular
7.
Sci Rep ; 12(1): 7910, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552514

RESUMO

Primary ventricular fibrillation (PVF) is a life-threatening complication of ST-segment elevation myocardial infarction (STEMI). It is unclear what roles viral infection and/or systemic inflammation may play as underlying triggers of PVF, as a second hit in the context of acute ischaemia. Here we aimed to evaluate whether the circulating virome and inflammatory proteome were associated with PVF development in patients with STEMI. Blood samples were obtained from non-PVF and PVF STEMI patients at the time of primary PCI, and from non-STEMI healthy controls. The virome profile was analysed using VirCapSeq-VERT (Virome Capture Sequencing Platform for Vertebrate Viruses), a sequencing platform targeting viral taxa of 342,438 representative sequences, spanning all virus sequence records. The inflammatory proteome was explored with the Olink inflammation panel, using the Proximity Extension Assay technology. After analysing all viral taxa known to infect vertebrates, including humans, we found that non-PVF and PVF patients only significantly differed in the frequencies of viruses in the Gamma-herpesvirinae and Anelloviridae families. In particular, most showed a significantly higher relative frequency in non-PVF STEMI controls. Analysis of systemic inflammation revealed no significant differences between the inflammatory profiles of non-PVF and PVF STEMI patients. Inflammatory proteins associated with cell adhesion, chemotaxis, cellular response to cytokine stimulus, and cell activation proteins involved in immune response (IL6, IL8 CXCL-11, CCL-11, MCP3, MCP4, and ENRAGE) were significantly higher in STEMI patients than non-STEMI controls. CDCP1 and IL18-R1 were significantly higher in PVF patients compared to healthy subjects, but not compared to non-PVF patients. The circulating virome and systemic inflammation were not associated with increased risk of PVF development in acute STEMI. Accordingly, novel strategies are needed to elucidate putative triggers of PVF in the setting of acute ischaemia, in order to reduce STEMI-driven sudden death burden.


Assuntos
Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Vírus , Animais , Antígenos de Neoplasias , Arritmias Cardíacas/complicações , Moléculas de Adesão Celular , Humanos , Inflamação/complicações , Intervenção Coronária Percutânea/efeitos adversos , Proteoma , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Fibrilação Ventricular/etiologia , Viroma
8.
Biomed Pharmacother ; 147: 112683, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35144050

RESUMO

Compelling evidence supports the therapeutic benefit of extracellular vesicles (EVs). EVs are nanostructures with a lipid bilayer membrane that are secreted by multiple cells, including mesenchymal stromal cells (MSCs), as means of cellular communication. MSC-EVs, resembling their MSC origin, carry protected immunomodulatory and pro-regenerative cargoes to targeted neighboring or distant cells and tissues. Though treatments focused on MSC-EVs have emerged as greatly versatile approaches to modulate multiple inflammatory-related conditions, crucial concerns, including the possibility of increasing therapeutic outcomes by pre-conditioning parental MSCs or engineering derived EVs and clarification of the most relevant mechanisms of action, remain. Here, we summarize the large amount of preclinical research surrounding the modulation of beneficial effects by MSC-EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose/fisiologia , Bioengenharia , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Imunomodulação/fisiologia , Técnicas In Vitro , Camundongos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
9.
Methods Mol Biol ; 2454: 61-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34845658

RESUMO

Stem cell therapy has an unparalleled potential to treat blood cancers, cardiovascular diseases and neurodegenerative conditions, among others. However, stem cell therapeutics must overcome multiple requirements before reaching clinical trials, including large animal safety and efficacy studies. In cardiovascular diseases swine models are the most widely adopted due to its great translational potential to humans. In this chapter, we will describe several protocols to induce iPSC dedifferentiation in swine fibroblasts, as well as conditioning treatments that may help in the reprogramming process.


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Animais , Reprogramação Celular , Fibroblastos , Vírus Sendai , Suínos
10.
J Cell Mol Med ; 26(3): 937-939, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931446

RESUMO

The present paper is a commentary to 'Identification and characterization of hADSC-derived exosome proteins from different isolation methods' (Huang et al. 2021; 10.1111/jcmm.16775). Given the enthusiasm for the potential of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs), some considerations deserve attention as they move through successive stages of research and application into humans. We herein remark the prerequisite of generating that evidence ensuring a high consistency in safety, composition and biological activity of the intended MSC-EV preparations, and the suitability of disparate isolation techniques to produce efficacious EV preparations and fulfil requirements for standardized clinical-grade biomanufacturing.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo
11.
Cells ; 10(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34943776

RESUMO

Specific proteins and processes have been identified in post-myocardial infarction (MI) pathological remodeling, but a comprehensive understanding of the complete molecular evolution is lacking. We generated microarray data from swine heart biopsies at baseline and 6, 30, and 45 days after infarction to feed machine-learning algorithms. We cross-validated the results using available clinical and experimental information. MI progression was accompanied by the regulation of adipogenesis, fatty acid metabolism, and epithelial-mesenchymal transition. The infarct core region was enriched in processes related to muscle contraction and membrane depolarization. Angiogenesis was among the first morphogenic responses detected as being sustained over time, but other processes suggesting post-ischemic recapitulation of embryogenic processes were also observed. Finally, protein-triggering analysis established the key genes mediating each process at each time point, as well as the complete adverse remodeling response. We modeled the behaviors of these genes, generating a description of the integrative mechanism of action for MI progression. This mechanistic analysis overlapped at different time points; the common pathways between the source proteins and cardiac remodeling involved IGF1R, RAF1, KPCA, JUN, and PTN11 as modulators. Thus, our data delineate a structured and comprehensive picture of the molecular remodeling process, identify new potential biomarkers or therapeutic targets, and establish therapeutic windows during disease progression.


Assuntos
Adipogenia/genética , Transição Epitelial-Mesenquimal/genética , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Algoritmos , Animais , Biópsia , Aprendizado Profundo , Modelos Animais de Doenças , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Humanos , Análise em Microsséries , Modelos Moleculares , Contração Muscular/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-raf/genética , Receptor IGF Tipo 1/genética , Suínos/genética
13.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942629

RESUMO

Multipotent mesenchymal stromal cells (MSC) represent a promising strategy for a variety of medical applications. Although only a limited number of MSC engraft and survive after in vivo cellular infusion, MSC have shown beneficial effects on immunomodulation and tissue repair. This indicates that the contribution of MSC exists in paracrine signaling, rather than a cell-contact effect of MSC. In this review, we focus on current knowledge about tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) and mechanisms based on extracellular vesicles (EV) that govern long-lasting immunosuppressive and regenerative activity of MSC. In this context, in particular, we discuss the very robust set of findings by Jha and colleagues, and the opportunity to potentially extend their research focus on EV isolated in concentrated conditioned media (CCM) from adipose tissue derived MSC (ASC). Particularly, the authors showed that ASC-CCM mitigated visual deficits after mild traumatic brain injury in mice. TSG-6 knockdown ASC were, then, used to generate TSG-6-depleted CCM that were not able to replicate the alleviation of abnormalities in injured animals. In light of the presented results, we envision that the infusion of much distilled ASC-CCM could enhance the alleviation of visual abnormalities. In terms of EV research, the advantages of using size-exclusion chromatography are also highlighted because of the enrichment of purer and well-defined EV preparations. Taken together, this could further delineate and boost the benefit of using MSC-based regenerative therapies in the context of forthcoming clinical research testing in diseases that disrupt immune system homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Moléculas de Adesão Celular/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Meios de Cultivo Condicionados/metabolismo , Humanos
14.
EBioMedicine ; 54: 102729, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32304998

RESUMO

BACKGROUND: Small cardiac tissue engineering constructs show promise for limiting post-infarct sequelae in animal models. This study sought to scale-up a 2-cm2 preclinical construct into a human-size advanced therapy medicinal product (ATMP; PeriCord), and to test it in a first-in-human implantation. METHODS: The PeriCord is a clinical-size (12-16 cm2) decellularised pericardial matrix colonised with human viable Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs). WJ-MSCs expanded following good manufacturing practices (GMP) met safety and quality standards regarding the number of cumulative population doublings, genomic stability, and sterility. Human decellularised pericardial scaffolds were tested for DNA content, matrix stiffness, pore size, and absence of microbiological growth. FINDINGS: PeriCord implantation was surgically performed on a large non-revascularisable scar in the inferior wall of a 63-year-old male patient. Coronary artery bypass grafting was concomitantly performed in the non-infarcted area. At implantation, the 16-cm2 pericardial scaffold contained 12·5 × 106 viable WJ-MSCs (85·4% cell viability; <0·51 endotoxin units (EU)/mL). Intraoperative PeriCord delivery was expeditious, and secured with surgical glue. The post-operative course showed non-adverse reaction to the PeriCord, without requiring host immunosuppression. The three-month clinical follow-up was uneventful, and three-month cardiac magnetic resonance imaging showed ~9% reduction in scar mass in the treated area. INTERPRETATION: This preliminary report describes the development of a scalable clinical-size allogeneic PeriCord cardiac bioimplant, and its first-in-human implantation. FUNDING: La Marató de TV3 Foundation, Government of Catalonia, Catalan Society of Cardiology, "La Caixa" Banking Foundation, Spanish Ministry of Science, Innovation and Universities, Institute of Health Carlos III, and the European Regional Development Fund.


Assuntos
Infarto do Miocárdio/cirurgia , Engenharia Tecidual/métodos , Transplante de Tecidos/métodos , Células Cultivadas , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Pericárdio/citologia , Alicerces Teciduais/química , Transplante Homólogo , Geleia de Wharton/citologia
15.
Stem Cell Res Ther ; 10(1): 356, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779673

RESUMO

BACKGROUND: Orthopaedic diseases are one of the major targets for regenerative medicine. In this context, Wharton's jelly (WJ) is an alternative source to bone marrow (BM) for allogeneic transplantation since its isolation does not require an invasive procedure for cell collection and does not raise major ethical concerns. However, the osteogenic capacity of human WJ-derived multipotent mesenchymal stromal cells (MSC) remains unclear. METHODS: Here, we compared the baseline osteogenic potential of MSC from WJ and BM cell sources by cytological staining, quantitative real-time PCR and proteomic analysis, and assessed chemical and biological strategies for priming undifferentiated WJ-MSC. Concretely, different inhibitors/activators of the TGFß1-BMP2 signalling pathway as well as the secretome of differentiating BM-MSC were tested. RESULTS: Cytochemical staining as well as gene expression and proteomic analysis revealed that osteogenic commitment was poor in WJ-MSC. However, stimulation of the BMP2 pathway with BMP2 plus tanshinone IIA and the addition of extracellular vesicles or protein-enriched preparations from differentiating BM-MSC enhanced WJ-MSC osteogenesis. Furthermore, greater outcome was obtained with the use of conditioned media from differentiating BM-MSC. CONCLUSIONS: Altogether, our results point to the use of master banks of WJ-MSC as a valuable alternative to BM-MSC for orthopaedic conditions.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Proteômica , Reação em Cadeia da Polimerase em Tempo Real
16.
Metabolism ; 95: 102-104, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30831143

RESUMO

Collection, cryopreservation and transplantation of umbilical cord blood (UCB)-derived cells have become a popular option for regenerative medicine, not limited to the transplantation of hematopoietic cell progenitors only. Indeed, increasing evidence shows that extracellular vesicles (EV), which include a heterogeneous pool of membranous structures secreted by the vast majority of cells, can serve as powerful tools for cell-free therapy due to precise multifunctional molecular cargoes. In this issue, Hu et al. [1] described that EV extracted from UCB (UCB-EV) ameliorate bone loss in senile osteoporotic mice and promote in vitro osteoblast differentiation of bone marrow-derived Mesenchymal Stromal Cells through miR-3960-mediated signaling. These results envision the capability of UCB-EV of priming multipotent stem cells toward the osteogenic cell lineage and interfering on bone resorption processes. Although processing and manufacturing of EV-based products have to further develop major issues, we foresee that EV will soon become new therapeutic products supplied by UCB banks for treating human diseases, including bone-related conditions.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Diferenciação Celular , Sangue Fetal , Células-Tronco Hematopoéticas , Humanos , Camundongos
17.
Proteomics ; 19(1-2): e1800397, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30592551

RESUMO

Extracellular vesicles (EVs), which include a variety of nano-sized membrane-encapsulated particles, are released to the extracellular microenvironment by the vast majority of cells and carry lipids, proteins, mRNA, and miRNA or non-coding RNA. Increasing evidence suggests the great versatility and potential of EV-based applications in humans. In this issue, van Balkom et al. explore and compare the reported proteomic signature of mesenchymal stromal cell (MSC)-derived small EVs. In particular, their paper offers a valuable approach and point of view on MSC-EV manufacturing and therapeutic potential. Briefly, van Balkom et al. aimed to identify a common protein signature that may be useful in ensuring the homogeneity of therapeutic MSC-EVs. In addition to excessive variability in EV-producing cell sources and culture conditions, the harvesting time for the EV-containing conditioned medium, and EV isolation procedure, the authors found a specific protein signature from the publicly available MSC-EVs proteome. In light of their findings and those from the plentiful studies published in this continuously growing area of research, potential focus areas and issues are outlined for the more rational design and optimization of MSC-EV production and potency for therapeutics.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Meios de Cultivo Condicionados , Humanos , Proteômica
18.
Sci Rep ; 8(1): 6708, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712965

RESUMO

Cardiac tissue engineering, which combines cells and supportive scaffolds, is an emerging treatment for restoring cardiac function after myocardial infarction (MI), although, the optimal construct remains a challenge. We developed two engineered cardiac grafts, based on decellularized scaffolds from myocardial and pericardial tissues and repopulated them with adipose tissue mesenchymal stem cells (ATMSCs). The structure, macromechanical and micromechanical scaffold properties were preserved upon the decellularization and recellularization processes, except for recellularized myocardium micromechanics that was ∼2-fold stiffer than native tissue and decellularized scaffolds. Proteome characterization of the two acellular matrices showed enrichment of matrisome proteins and major cardiac extracellular matrix components, considerably higher for the recellularized pericardium. Moreover, the pericardial scaffold demonstrated better cell penetrance and retention, as well as a bigger pore size. Both engineered cardiac grafts were further evaluated in pre-clinical MI swine models. Forty days after graft implantation, swine treated with the engineered cardiac grafts showed significant ventricular function recovery. Irrespective of the scaffold origin or cell recolonization, all scaffolds integrated with the underlying myocardium and showed signs of neovascularization and nerve sprouting. Collectively, engineered cardiac grafts -with pericardial or myocardial scaffolds- were effective in restoring cardiac function post-MI, and pericardial scaffolds showed better structural integrity and recolonization capability.


Assuntos
Transplante de Coração , Células-Tronco Mesenquimais , Infarto do Miocárdio/terapia , Alicerces Teciduais , Animais , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Ventrículos do Coração/crescimento & desenvolvimento , Ventrículos do Coração/metabolismo , Humanos , Infarto do Miocárdio/patologia , Pericárdio/crescimento & desenvolvimento , Pericárdio/patologia , Proteoma , Suínos , Doadores de Tecidos , Engenharia Tecidual
19.
Expert Rev Cardiovasc Ther ; 16(4): 305-311, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29509034

RESUMO

INTRODUCTION: Chronic diseases, including myocardial scar healing and heart failure remission, impose huge social and economic burdens, and novel approaches are needed. Several therapeutic modalities are currently being evaluated, including cell therapy, stem cell conditioning, and cardiac tissue engineering. Areas covered: This review discusses the restoration of cardiac function after myocardial infarction using a vascularized flap of autologous cardiac adipose tissue over an akinetic scar. It addresses the risks and benefits of using cardiac adipose progenitors and the adipose graft transposition procedure (AGTP) to ameliorate cardiac dysfunction in preclinical and clinical trials. Expert commentary: The focus is shifting from first-generation studies that used ex vivo expanded and manipulated progenitors to newer second-generation approaches, including AGTP, which are inexpensive and do not raise ethical issues. AGTP safety has been validated, and the ongoing AGTP-2 trial to determine AGTP efficacy and outcome is currently recruiting patients (NCT02798276). This reparative strategy is safe, avoids the risks associated with ex vivo manipulation, and the preclinical and clinical trials performed to date show cardiac function recovery and reduced necrosis. Confirmation of these data in the AGTP-2 trial could pave the way for the clinical use of this novel modality.


Assuntos
Tecido Adiposo/transplante , Cicatriz , Infarto do Miocárdio , Miocárdio/patologia , Cicatriz/etiologia , Cicatriz/cirurgia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/cirurgia , Engenharia Tecidual/métodos , Transplante Autólogo/métodos
20.
Front Immunol ; 8: 1577, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209319

RESUMO

The ectoenzymes CD39 and CD73 regulate the purinergic signaling through the hydrolysis of adenosine triphosphate (ATP)/ADP to AMP and to adenosine (Ado), respectively. This shifts the pro-inflammatory milieu induced by extracellular ATP to the anti-inflammatory regulation by Ado. Mesenchymal stem cells (MSCs) have potent immunomodulatory capabilities, including monocyte modulation toward an anti-inflammatory phenotype aiding tissue repair. In vitro, we observed that human cardiac adipose tissue-derived MSCs (cATMSCs) and umbilical cord MSCs similarly polarize monocytes toward a regulatory M2 phenotype, which maintained the expression of CD39 and induced expression of CD73 in a cell contact dependent fashion, correlating with increased functional activity. In addition, the local treatment with porcine cATMSCs using an engineered bioactive graft promoted the in vivo CD73 expression on host monocytes in a swine model of myocardial infarction. Our results suggest the upregulation of ectonucleotidases on MSC-conditioned monocytes as an effective mechanism to amplify the long-lasting immunomodulatory and healing effects of MSCs delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA