Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuromuscul Dis ; 10(6): 1041-1053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694373

RESUMO

BACKGROUND: Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. In DM1 patients, skeletal muscle is severely impaired, even atrophied and patients experience a progressive decrease in maximum strength. Strength training for these individuals can improve their muscle function and mass, however, the biological processes involved in these improvements remain unknown. OBJECTIVE: This exploratory study aims at identifying the proteomic biomarkers and variables associated with the muscle proteome changes induced by training in DM1 individuals. METHODS: An ion library was developed from liquid chromatography-tandem mass spectrometry proteomic analyses of Vastus Lateralis muscle biopsies collected in 11 individuals with DM1 pre-and post-training. RESULTS: The proteomic analysis showed that the levels of 44 proteins were significantly modulated. A literature review (PubMed, UniProt, PANTHER, REACTOME) classified these proteins into biological sub-classes linked to training-induced response, including immunity, energy metabolism, apoptosis, insulin signaling, myogenesis and muscle contraction. Linear models identified key variables explaining the proteome modulation, including atrophy and hypertrophy factors. Finally, six proteins of interest involved in myogenesis, muscle contraction and insulin signaling were identified: calpain-3 (CAN3; Muscle development, positive regulation of satellite cell activation), 14-3-3 protein epsilon (1433E; Insulin/Insulin-like growth factor, PI3K/Akt signaling), myosin-binding protein H (MYBPH; Regulation of striated muscle contraction), four and a half LIM domains protein 3 (FHL3; Muscle organ development), filamin-C (FLNC; Muscle fiber development) and Cysteine and glycine-rich protein 3 (CSRP3). CONCLUSION: These findings may lead to the identification for DM1 individuals of novel muscle biomarkers for clinical improvement induced by rehabilitation, which could eventually be used in combination with a targeted pharmaceutical approach to improving muscle function, but further studies are needed to confirm those results.


Assuntos
Insulinas , Doenças Musculares , Distrofia Miotônica , Adulto , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma/metabolismo , Proteômica , Músculo Esquelético/patologia , Biomarcadores/metabolismo , Insulinas/metabolismo
2.
Nat Commun ; 14(1): 4033, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468473

RESUMO

Muscle stem cells, the engine of muscle repair, are affected in myotonic dystrophy type 1 (DM1); however, the underlying molecular mechanism and the impact on the disease severity are still elusive. Here, we show using patients' samples that muscle stem cells/myoblasts exhibit signs of cellular senescence in vitro and in situ. Single cell RNAseq uncovers a subset of senescent myoblasts expressing high levels of genes related to the senescence-associated secretory phenotype (SASP). We show that the levels of interleukin-6, a prominent SASP cytokine, in the serum of DM1 patients correlate with muscle weakness and functional capacity limitations. Drug screening revealed that the senolytic BCL-XL inhibitor (A1155463) can specifically remove senescent DM1 myoblasts by inducing their apoptosis. Clearance of senescent cells reduced the expression of SASP, which rescued the proliferation and differentiation capacity of DM1 myoblasts in vitro and enhanced their engraftment following transplantation in vivo. Altogether, this study identifies the pathogenic mechanism associated with muscle stem cell defects in DM1 and opens a therapeutic avenue that targets these defective cells to restore myogenesis.


Assuntos
Distrofia Miotônica , Células Satélites de Músculo Esquelético , Humanos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Senoterapia , Fibras Musculares Esqueléticas/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética
3.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115383

RESUMO

Axon guidance receptors such as deleted in colorectal cancer (DCC) contribute to the normal formation of neural circuits, and their mutations can be associated with neural defects. In humans, heterozygous mutations in DCC have been linked to congenital mirror movements, which are involuntary movements on one side of the body that mirror voluntary movements of the opposite side. In mice, obvious hopping phenotypes have been reported for bi-allelic Dcc mutations, while heterozygous mutants have not been closely examined. We hypothesized that a detailed characterization of Dcc heterozygous mice may reveal impaired corticospinal and spinal functions. Anterograde tracing of the Dcc+/- motor cortex revealed a normally projecting corticospinal tract, intracortical microstimulation (ICMS) evoked normal contralateral motor responses, and behavioral tests showed normal skilled forelimb coordination. Gait analyses also showed a normal locomotor pattern and rhythm in adult Dcc+/- mice during treadmill locomotion, except for a decreased occurrence of out-of-phase walk and an increased duty cycle of the stance phase at slow walking speed. Neonatal isolated Dcc+/- spinal cords had normal left-right and flexor-extensor coupling, along with normal locomotor pattern and rhythm, except for an increase in the flexor-related motoneuronal output. Although Dcc+/- mice do not exhibit any obvious bilateral impairments like those in humans, they exhibit subtle motor deficits during neonatal and adult locomotion.


Assuntos
Locomoção , Tratos Piramidais , Animais , Receptor DCC/genética , Heterozigoto , Locomoção/genética , Camundongos , Neurônios Motores/fisiologia , Fenótipo
4.
Muscle Nerve ; 48(3): 403-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23813613

RESUMO

INTRODUCTION: Mast cells (MCs) can stimulate cell proliferation, but their specific contribution to skeletal muscle regeneration is not well defined. METHODS: L6 myoblast proliferation was assessed in coculture with MCs or when grown with MC-conditioned media. To address the in vivo implication of MCs in regeneration, rats were treated with cromolyn, and myoblast proliferation, immune cell accumulation, and myogenic factors were assessed in bupivacaine-injured muscles. RESULTS: In vitro, both procedures increased the L6 cell proliferation rate, and this was tryptase-dependent. In vivo, MC stabilization increased myoblast proliferation and accumulation of macrophages CD68 and CD163 after injury. This correlated with a sequential increase in MyoD and myogenin protein level expression. CONCLUSIONS: MCs can directly stimulate muscle cell proliferation via tryptase. MCs can influence myoblast proliferation in vivo, but this effect seems to be predominantly related to their modulation of macrophage recruitment. The MC is a potential actor in the early stages of muscle healing.


Assuntos
Proliferação de Células , Mastócitos/fisiologia , Células Musculares/fisiologia , Músculo Esquelético/citologia , Doenças Musculares/patologia , Análise de Variância , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Células Cultivadas , Técnicas de Cocultura , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Leucócitos/fisiologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Doenças Musculares/metabolismo , Neutrófilos/metabolismo , Oligopeptídeos/metabolismo , Fator de Transcrição PAX7/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Triptases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA