RESUMO
BACKGROUND: Epidemiological data reveal that 45% of persons with multiple sclerosis (PwMS) in France are more than 50 years. This population more than 50 is more susceptible to cancer, and this risk may be increased by frequent use of immunosuppressive drugs. Consequently, concerns have arisen about the potential increased risk of cancer in PwMS and how patients should be screened and managed in terms of cancer risk. OBJECTIVE: To develop evidence-based recommendations to manage the coexistence of cancer and multiple sclerosis (MS). METHODS: The French Group for Recommendations in MS collected articles from PubMed and university databases covering the period January 1975 through June 2022. The RAND/UCLA method was employed to achieve formal consensus. MS experts comprehensively reviewed the full-text articles and developed the initial recommendations. A group of multidisciplinary health care specialists then validated the final proposal. RESULTS: Five key questions were addressed, encompassing various topics such as cancer screening before or after initiating a disease-modifying therapy (DMT), appropriate management of MS in the context of cancer, recommended follow-up for cancer in patients receiving a DMT, and the potential reintroduction of a DMT after initial cancer treatment. A strong consensus was reached for all 31 recommendations. CONCLUSION: These recommendations propose a strategic approach to managing cancer risk in PwMS.
Assuntos
Esclerose Múltipla , Neoplasias , Humanos , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/terapia , Neoplasias/epidemiologia , França/epidemiologia , Imunossupressores/uso terapêuticoRESUMO
OBJECTIVES: Immune checkpoint inhibitors (ICIs) are increasingly used in cancer treatment. Their mechanism of action raises the question of possible exacerbation of preexisting multiple sclerosis (MS). The aim of our study was to assess the risk of increased MS activity, defined by the occurrence of a relapse and/or a new MRI lesion, after ICI initiation. METHODS: This French multicentric study collected retrospective and prospective data on patients with MS treated with ICIs after a cancer diagnosis. RESULTS: We identified 18 patients with a median age of 48 years. Three of them (17%), all aged 50 years or younger, with a relapsing-remitting course, showed clinical and/or radiologic signs of MS activity 3 to 6 months after ICI initiation. They had stopped disease-modifying treatment (DMT) several months earlier, at the time of cancer diagnosis. Only one had both clinical and MRI activity, with mild severity and complete recovery. DISCUSSION: Our study suggests that the overall risk of MS activity under ICI is low and could be mainly driven by DMT discontinuation, as in MS in general. Although larger studies are needed for better risk assessment in younger patients with more active disease, ICI should be considered when needed in patients with MS.
Assuntos
Esclerose Múltipla , Humanos , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Inibidores de Checkpoint Imunológico/efeitos adversos , Estudos Retrospectivos , Estudos Prospectivos , RecidivaRESUMO
The Hippo pathway is an evolutionarily conserved kinase cascade involved in the control of tissue homeostasis, cellular differentiation, proliferation, and organ size, and is regulated by cell-cell contact, apical cell polarity, and mechanical signals. Miss-regulation of this pathway can lead to cancer. The Hippo pathway acts through the inhibition of the transcriptional coactivators YAP and TAZ through phosphorylation. Among the various signaling mechanisms controlling the hippo pathway, activation of G12/13 by G protein-coupled receptors (GPCR) recently emerged. Here we show that a GPCR, the ghrelin receptor, that activates several types of G proteins, including G12/13, Gi/o, and Gq, can activate YAP through Gq/11 exclusively, independently of G12/13. We revealed that a strong basal YAP activation results from the high constitutive activity of this receptor, which can be further increased upon agonist activation. Thus, acting on ghrelin receptor allowed to modulate up-and-down YAP activity, as activating the receptor increased YAP activity and blocking constitutive activity reduced YAP activity. Our results demonstrate that GPCRs can be used as molecular switches to finely up- or down-regulate YAP activity through a pure Gq pathway.
Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Proteínas de Ciclo Celular/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Via de Sinalização Hippo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/genéticaRESUMO
As key regulators of the actin cytoskeleton, RHO GTPase expression and/or activity are deregulated in tumorigenesis and metastatic progression. Nevertheless, the vast majority of experiments supporting this conclusion was conducted on cell lines but not on human tumor samples that were mostly studied at the expression level only. Up to now, the activity of RHO proteins remains poorly investigated in human tumors. In this article, we present the development of a robust nanobody-based ELISA assay, with a high selectivity that allows an accurate quantification of RHO protein GTP-bound state in the nanomolar range (1 nM; 20 µg/L), not only in cell lines after treatment but also in tumor samples. Of note, we present here a fine analysis of RHOA-like and RAC1 active state in tumor samples with the most comprehensive study of RHOA-GTP and RHOC-GTP levels performed on human breast tumor samples. We revealed increased GTP-bound RHOA and RHOC protein activities in tumors compared to normal tissue counterparts, and demonstrated that the RHO active state and RHO expression are two independent parameters among different breast cancer subtypes. Our results further highlight the regulation of RHO protein activation in tumor samples and the relevance of directly studying RHO GTPase activities involvement in molecular pathways.
Assuntos
Neoplasias da Mama , Proteína rhoA de Ligação ao GTP , Proteína de Ligação a GTP rhoC , Transformação Celular Neoplásica , Feminino , Guanosina Trifosfato , Humanos , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismoRESUMO
PURPOSE: Pathogenic variants in STUB1 were initially described in autosomal recessive spinocerebellar ataxia type 16 and dominant cerebellar ataxia with cerebellar cognitive dysfunction (SCA48). METHODS: We analyzed a large series of 440 index cerebellar ataxia cases, mostly with dominant inheritance. RESULTS: STUB1 variants were detected in 50 patients. Age at onset and severity were remarkably variable. Cognitive impairment, predominantly frontal syndrome, was observed in 54% of STUB1 variant carriers, including five families with Huntington or frontotemporal dementia disease-like phenotypes associated with ataxia, while no STUB1 variant was found in 115 patients with frontotemporal dementia. We report neuropathological findings of a STUB1 heterozygous patient, showing massive loss of Purkinje cells in the vermis and major loss in the cerebellar hemispheres without atrophy of the pons, hippocampus, or cerebral cortex. This screening of STUB1 variants revealed new features: (1) the majority of patients were women (70%) and (2) "second hits" in AFG3L2, PRKCG, and TBP were detected in three families suggesting synergic effects. CONCLUSION: Our results reveal an unexpectedly frequent (7%) implication of STUB1 among dominantly inherited cerebellar ataxias, and suggest that the penetrance of STUB1 variants could be modulated by other factors, including sex and variants in other ataxia-related genes.
Assuntos
Ataxia Cerebelar , Disfunção Cognitiva , Ataxias Espinocerebelares , Proteases Dependentes de ATP , ATPases Associadas a Diversas Atividades Celulares , Ataxia , Ataxia Cerebelar/genética , Feminino , Humanos , Masculino , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína LigasesRESUMO
The vasopressin V2 receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target for water balance disorders such as polycystic kidney disease. Traditionally, the discovery of novel agents for the vasopressin V2 receptor has been guided by evaluating their receptor affinity, largely ignoring the binding kinetics. However, the latter is receiving increasing attention in the drug research community and has been proved to be a more complete descriptor of the dynamic process of ligand-receptor interaction. Herein we aim to revisit the molecular basis of ligand-vasopressin V2 receptor interaction from the less-investigated kinetic perspective. A homogenous time-resolved fluorescence resonance energy transfer (TR-FRET) assay was set up and optimized, which enabled accurate kinetic profiling of unlabeled vasopressin V2 receptor ligands. Receptor occupancy profiles of two representative antagonists with distinct target residence time were simulated. Their functional effects were further explored in cAMP assays. Our results showed that the antagonist with longer receptor residence time (lixivaptan) displayed sustained target occupancy than the antagonist with shorter receptor residence time (mozavaptan). In accordance, lixivaptan displayed insurmountable antagonism and wash-resistant inhibitory effect on the cellular cAMP level, while not so for mozavaptan. Together, our data provide evidence that binding kinetics, next to their affinity, offers additional information for the dynamic process of ligand-receptor interaction. Hopefully, this study may lead to more kinetics-directed medicinal chemistry efforts and aid the design and discovery of different-in-class of vasopressin V2 receptor ligands for clinical applications.
Assuntos
Receptores de Vasopressinas/metabolismo , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Cinética , Ligantes , Ligação Proteica , Receptores de Vasopressinas/genéticaRESUMO
Neuroplin 1 (NRP1), a transmembrane protein interacting with Vascular Endothelial Growth Factor VEGF-A165 (called here VEGF165) and the tyrosine kinase Receptor 2 (VEGFR2) promote angiogenesis and vascular homeostasis. In a pathophysiological context, several studies suggested that VEGFR2 and NRP1 mediate tumor development and progression. Given the involvement of the VEGF165 network in promoting tumor angiogenesis, NRP1, VEGFR2 and VEGF165 have been identified as targets for anti-angiogenic therapy. No binding assay exists to monitor specifically the binding of VEGF165 to the VEGFR2/NRP1 complex in intact cells. We established a binding assay based on the homogenous time-resolved fluorescence (HTRF®) technology. This unique binding assay enables to assess the interaction of VEGF165 with VEGFR2 or NRP1 within the VEGFR2/NRP1 complex. Ligand binding saturation experiments revealed that VEGF165 binds the VEGFR2/NRP1 complex at the cell surface with a ten to twenty-fold higher affinity compared to SNAP-VEGFR2 or SNAP-NRP1 receptors alone not engaged in the heteromeric complex. The assay allows characterizing the impact of NRP1 ligands on VEGF165 to the complex. It shows high specificity, reproducibility and robustness, making it compatible with high throughput screening (HTS) applications for identifying new VEGF165 antagonists selective for NRP1 or the VEGFR2/NRP1 complex.
Assuntos
Neuropilina-1/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
INTRODUCTION: Tuberous sclerosis complex (TSC) is a rare autosomal dominant genetic disease, characterized by the development of benign tumors in several organs. During infancy, 6 - 20% of patients develop brain tumors called subependymal giant cell astrocytoma (SEGA). CASE REPORTS: Here we present two patients with TSC, who displayed acute intracranial tumors requiring surgery. Although both tumors shared similar histological aspects with large astrocytic cells and worrisome features, immunohistochemical and genetic analysis successfully distinguished an opposite diagnosis for the two patients.â©.
Assuntos
Astrócitos/patologia , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Aberrações Cromossômicas , Genes Dominantes/genética , Glioblastoma/genética , Glioblastoma/patologia , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Adenosina Trifosfatases/genética , Adulto , Astrocitoma/terapia , Biomarcadores Tumorais/genética , Encéfalo/patologia , Neoplasias Encefálicas/terapia , Terapia Combinada , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Diagnóstico Diferencial , Glioblastoma/terapia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Fatores de Transcrição/genética , Esclerose Tuberosa/terapiaRESUMO
The pleiotropic cytokine hormone leptin, by activating its receptor OB-R, plays a major role in many biological processes, including energy homeostasis, immune function, and cell survival and proliferation. Abnormal leptin action is associated with obesity, autoimmune diseases, and cancer. The pharmacological characterization of OB-R and the development of synthetic OB-R ligands are still in their infancy because currently available binding assays are not compatible with ligand saturation binding experiments and high-throughput screening (HTS) approaches. We have developed here a novel homogeneous time-resolved fluorescence-based binding assay that overcomes these limitations. In this assay, fluorescently labeled leptin or leptin antagonist binds to the SNAP-tagged OB-R covalently labeled with terbium cryptate (Tb). Successful binding is monitored by measuring the energy transfer between the Tb energy donor and the fluorescently labeled leptin energy acceptor. Ligand binding saturation experiments revealed high-affinity dissociation constants in the subnanomolar range with an excellent signal-to-noise ratio. The assay performed in a 384-well format shows high specificity and reproducibility, making it perfectly compatible with HTS applications to identify new OB-R agonists or antagonists. In addition, fluorescently labeled leptin and SNAP-tagged OB-R will be valuable tools for monitoring leptin and OB-R trafficking in cells and tissues.