Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2456: 299-317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35612751

RESUMO

Identification of bacterial species in biological samples is essential in many applications. However, the standard methods usually use a time-consuming bacterial culture (24-48 h) and sometimes lack in specificity. To overcome these limitations, we developed a new protocol, combining LC-MS/MS analysis in Data Independent Acquisition mode and machine learning algorithms, enabling the accurate identification of the bacterial species contaminating a sample in a few hours without bacterial culture. In this chapter, we describe the three steps of the protocol (spectral libraries generation, training step, identification step) to generate customized peptide signatures and use them for bacterial identification in biological samples through targeted proteomics analyses and prediction models.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Bactérias/genética , Cromatografia Líquida/métodos , Aprendizado de Máquina , Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
2.
Cell Death Differ ; 29(8): 1486-1499, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35066575

RESUMO

Severe SARS-CoV-2 infections are characterized by lymphopenia, but the mechanisms involved are still elusive. Based on our knowledge of HIV pathophysiology, we hypothesized that SARS-CoV-2 infection-mediated lymphopenia could also be related to T cell apoptosis. By comparing intensive care unit (ICU) and non-ICU COVID-19 patients with age-matched healthy donors, we found a strong positive correlation between plasma levels of soluble FasL (sFasL) and T cell surface expression of Fas/CD95 with the propensity of T cells to die and CD4 T cell counts. Plasma levels of sFasL and T cell death are correlated with CXCL10 which is part of the signature of 4 biomarkers of disease severity (ROC, 0.98). We also found that members of the Bcl-2 family had modulated in the T cells of COVID-19 patients. More importantly, we demonstrated that the pan-caspase inhibitor, Q-VD, prevents T cell death by apoptosis and enhances Th1 transcripts. Altogether, our results are compatible with a model in which T-cell apoptosis accounts for T lymphopenia in individuals with severe COVID-19. Therefore, a strategy aimed at blocking caspase activation could be beneficial for preventing immunodeficiency in COVID-19 patients.


Assuntos
COVID-19 , Linfopenia , Apoptose , Linfócitos T CD4-Positivos/metabolismo , Caspases/metabolismo , Proteína Ligante Fas , Humanos , SARS-CoV-2 , Linfócitos T/metabolismo , Receptor fas/metabolismo
3.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803922

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by a sustained elevation of pulmonary artery (PA) pressure, right ventricular failure, and premature death. Enhanced proliferation and resistance to apoptosis (as seen in cancer cells) of PA smooth muscle cells (PASMCs) is a major pathological hallmark contributing to pulmonary vascular remodeling in PAH, for which current therapies have only limited effects. Emerging evidence points toward a critical role for Enhancer of Zeste Homolog 2 (EZH2) in cancer cell proliferation and survival. However, its role in PAH remains largely unknown. The aim of this study was to determine whether EZH2 represents a new factor critically involved in the abnormal phenotype of PAH-PASMCs. We found that EZH2 is overexpressed in human lung tissues and isolated PASMCs from PAH patients compared to controls as well as in two animal models mimicking the disease. Through loss- and gain-of-function approaches, we showed that EZH2 promotes PAH-PASMC proliferation and survival. By combining quantitative transcriptomic and proteomic approaches in PAH-PASMCs subjected or not to EZH2 knockdown, we found that inhibition of EZH2 downregulates many factors involved in cell-cycle progression, including E2F targets, and contributes to maintain energy production. Notably, we found that EZH2 promotes expression of several nuclear-encoded components of the mitochondrial translation machinery and tricarboxylic acid cycle genes. Overall, this study provides evidence that, by overexpressing EZH2, PAH-PASMCs remove the physiological breaks that normally restrain their proliferation and susceptibility to apoptosis and suggests that EZH2 or downstream factors may serve as therapeutic targets to combat pulmonary vascular remodeling.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteoma/genética , Hipertensão Arterial Pulmonar/genética , Transcriptoma/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Ciclo do Ácido Cítrico/genética , Epigênese Genética/genética , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/crescimento & desenvolvimento , Artéria Pulmonar/patologia , Ratos
4.
Am J Respir Crit Care Med ; 203(5): 614-627, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021405

RESUMO

Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness.Objectives: To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.Methods: Protein expression profiling was conducted by two-dimensional liquid chromatography coupled to tandem mass spectrometry in isolated PASMCs from controls and patients with PAH. Multiple molecular, biochemical, and pharmacologic approaches were used to decipher the role of NUDT1 (nudrix hyrolase 1) in PAH.Measurements and Main Results: Increased expression of the detoxifying DNA enzyme NUDT1 was detected in cells and tissues from patients with PAH and animal models. In vitro, molecular or pharmacological inhibition of NUDT1 in PAH-PASMCs induced accumulation of oxidized nucleotides in the DNA, irresolvable DNA damage (comet assay), disruption of cellular bioenergetics (Seahorse), and cell death (terminal deoxynucleotidyl transferase dUTP nick end labeling assay). In two animal models with established PAH (i.e., monocrotaline and Sugen/hypoxia-treated rats), pharmacological inhibition of NUDT1 using (S)-Crizotinib significantly decreased pulmonary vascular remodeling and improved hemodynamics and cardiac function.Conclusions: Our results indicate that, by overexpressing NUDT1, PAH-PASMCs hijack persistent oxidative stress in preventing incorporation of oxidized nucleotides into DNA, thus allowing the cell to escape apoptosis and proliferate. Given that NUDT1 inhibitors are under clinical investigation for cancer, they may represent a new therapeutic option for PAH.


Assuntos
Enzimas Reparadoras do DNA/genética , DNA/metabolismo , Estresse Oxidativo/genética , Monoéster Fosfórico Hidrolases/genética , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Remodelação Vascular/genética , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Adulto , Idoso , Animais , Apoptose/genética , Western Blotting , Estudos de Casos e Controles , Proliferação de Células/genética , Cromatografia Líquida , Ensaio Cometa , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box M1/metabolismo , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Oxirredução , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Espectrometria de Massas em Tandem , Regulação para Cima
5.
Mol Cell Proteomics ; 18(12): 2492-2505, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585987

RESUMO

Fast identification of microbial species in clinical samples is essential to provide an appropriate antibiotherapy to the patient and reduce the prescription of broad-spectrum antimicrobials leading to antibioresistances. MALDI-TOF-MS technology has become a tool of choice for microbial identification but has several drawbacks: it requires a long step of bacterial culture before analysis (≥24 h), has a low specificity and is not quantitative. We developed a new strategy for identifying bacterial species in urine using specific LC-MS/MS peptidic signatures. In the first training step, libraries of peptides are obtained on pure bacterial colonies in DDA mode, their detection in urine is then verified in DIA mode, followed by the use of machine learning classifiers (NaiveBayes, BayesNet and Hoeffding tree) to define a peptidic signature to distinguish each bacterial species from the others. Then, in the second step, this signature is monitored in unknown urine samples using targeted proteomics. This method, allowing bacterial identification in less than 4 h, has been applied to fifteen species representing 84% of all Urinary Tract Infections. More than 31,000 peptides in 190 samples were quantified by DIA and classified by machine learning to determine an 82 peptides signature and build a prediction model. This signature was validated for its use in routine using Parallel Reaction Monitoring on two different instruments. Linearity and reproducibility of the method were demonstrated as well as its accuracy on donor specimens. Within 4h and without bacterial culture, our method was able to predict the predominant bacteria infecting a sample in 97% of cases and 100% above the standard threshold. This work demonstrates the efficiency of our method for the rapid and specific identification of the bacterial species causing UTI and could be extended in the future to other biological specimens and to bacteria having specific virulence or resistance factors.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/urina , Bacteriúria/urina , Cromatografia Líquida/métodos , Aprendizado de Máquina , Espectrometria de Massas em Tandem/métodos , Bactérias/isolamento & purificação , Humanos , Peptídeos/urina , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Mol Cell Proteomics ; 18(4): 744-759, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700495

RESUMO

The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.


Assuntos
Espectrometria de Massas/métodos , Células-Tronco Mesenquimais/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Oxigênio/farmacologia , Reprodutibilidade dos Testes
7.
Biochim Biophys Acta ; 1863(11): 2758-2765, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27566291

RESUMO

Besides genetic abnormalities in MPN patients, several studies have reported alterations in protein expression that could contribute towards the clinical phenotype. However, little is known about protein modifications in Ph- MPN erythrocytes. In this context, we used a quantitative mass spectrometry proteomics approach to study the MPN erythrocyte proteome. LC-MS/MS (LTQ Orbitrap) analysis led to the identification of 51 and 86 overexpressed proteins in Polycythemia Vera and Essential Thrombocythemia respectively, compared with controls. Functional comparison using pathway analysis software showed that the Rho GTPase family signaling pathways were deregulated in MPN patients. In particular, IQGAP1 was significantly overexpressed in MPNs compared with controls. Additionally, Western-blot analysis not only confirmed IQGAP1 overexpression, but also showed that IQGAP1 levels depended on the patient's genotype. Moreover, we found that in JAK2V617F patients IQGAP1 could bind RhoA, Rac1 and Cdc42 and consequently recruit activated GTP-Rac1 and the cytoskeleton motility protein PAK1. In CALR(+) patients, IQGAP1 was not overexpressed but immunoprecipitated with RhoGDI. In JAK2V617F transduced Ba/F3 cells we confirmed JAK2 inhibitor-sensitive overexpression of IQGAP1/PAK1. Altogether, our data demonstrated alterations of IQGAP1/Rho GTPase signaling in MPN erythrocytes dependent on JAK2/CALR status, reinforcing the hypothesis that modifications in erythrocyte signaling pathways participate in Ph- MPN pathogenesis.


Assuntos
Biomarcadores Tumorais/genética , Calreticulina/genética , Eritrócitos/enzimologia , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/enzimologia , Transdução de Sinais , Proteínas Ativadoras de ras GTPase/metabolismo , Biomarcadores Tumorais/sangue , Calreticulina/sangue , Estudos de Casos e Controles , Linhagem Celular , Cromatografia Líquida , Predisposição Genética para Doença , Humanos , Janus Quinase 2/sangue , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Fenótipo , Ligação Proteica , Proteômica/métodos , Espectrometria de Massas em Tandem , Transfecção , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/sangue , Proteínas Ativadoras de ras GTPase/genética , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Data Brief ; 8: 342-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27331112

RESUMO

This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

9.
J Proteomics ; 145: 91-102, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27095597

RESUMO

UNLABELLED: Epithelial ovarian cancer (EOC) is a disease responsible for more deaths among women in the Western world than all other gynecologic malignancies. There is urgent need for new therapeutic targets and a better understanding of EOC initiation and progression. We have previously identified the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3) gene, a member of the GalNAc-transferases (GalNAc-Ts) gene family, as hypomethylated and overexpressed in high-grade serous EOC tumors, compared to low malignant potential EOC tumors and normal ovarian tissues. This data also suggested for a role of GALNT3 in aberrant EOC glycosylation, possibly implicated in disease progression. To evaluate differential glycosylation in EOC caused by modulations in GALNT3 expression, we used a metabolic labeling strategy for enrichment and mass spectrometry-based characterization of glycoproteins following GALNT3 gene knockdown (KD) in A2780s EOC cells. A total of 589 differentially expressed glycoproteins were identified upon GALNT3 KD. Most identified proteins were involved in mechanisms of cellular metabolic functions, post-translational modifications, and some have been reported to be implicated in EOC etiology. The GALNT3-dependent glycoproteins identified by this metabolic labeling approach support the oncogenic role of GALNT3 in EOC dissemination and may be pursued as novel EOC biomarkers and/or therapeutic targets. BIOLOGICAL SIGNIFICANCE: Knowledge of the O-glycoproteome has been relatively elusive, and the functions of the individual polypeptide GalNAc-Ts have been poorly characterized. Alterations in GalNAc-Ts expression were shown to provide huge variability in the O-glycoproteome in various pathologies, including cancer. The application of a chemical biology approach for the metabolic labeling and subsequent characterization of O-glycoproteins in EOC using the Ac4GalNAz metabolite has provided a strategy allowing for proteomic discovery of GalNAc-Ts specific functions. Our study supports an essential role of one of the GalNAc-Ts - GALNT3, in EOC dissemination, including its implication in modulating PTMs and EOC metabolism. Our approach validates the use of the applied metabolic strategy to identify important functions of GalNAc-Ts in normal and pathological conditions.


Assuntos
Perfilação da Expressão Gênica , Glicoproteínas/análise , N-Acetilgalactosaminiltransferases/genética , Neoplasias Ovarianas/genética , Proteômica/métodos , Feminino , Técnicas de Silenciamento de Genes , Glicoproteínas/genética , Glicosilação , Humanos , Neoplasias Ovarianas/química , Neoplasias Ovarianas/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
10.
Mol Cell Proteomics ; 12(8): 2293-312, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674615

RESUMO

In order to map the extracellular or membrane proteome associated with the vasculature and the stroma in an embryonic organism in vivo, we developed a biotinylation technique for chicken embryo and combined it with mass spectrometry and bioinformatic analysis. We also applied this procedure to implanted tumors growing on the chorioallantoic membrane or after the induction of granulation tissue. Membrane and extracellular matrix proteins were the most abundant components identified. Relative quantitative analysis revealed differential protein expression patterns in several tissues. Through a bioinformatic approach, we determined endothelial cell protein expression signatures, which allowed us to identify several proteins not yet reported to be associated with endothelial cells or the vasculature. This is the first study reported so far that applies in vivo biotinylation, in combination with robust label-free quantitative proteomics approaches and bioinformatic analysis, to an embryonic organism. It also provides the first description of the vascular and matrix proteome of the embryo that might constitute the starting point for further developments.


Assuntos
Proteínas Aviárias/metabolismo , Embrião de Galinha/metabolismo , Membrana Corioalantoide/metabolismo , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Animais , Biotinilação , Linhagem Celular Tumoral , Membrana Corioalantoide/lesões , Humanos , Intestino Delgado/embriologia , Intestino Delgado/metabolismo , Rim/embriologia , Rim/metabolismo , Fígado/embriologia , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Proteoma
11.
PLoS One ; 6(9): e23949, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935367

RESUMO

BACKGROUND: Mitochondrial ATP synthase is expressed as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein component in High Density Lipoproteins (HDL). On hepatocytes, apoA-I binds to cell surface ATP synthase (namely ecto-F(1)-ATPase) and stimulates its ATPase activity, generating extracellular ADP. This production of extracellular ADP activates a P2Y(13)-mediated HDL endocytosis pathway. Conversely, exogenous IF1, classically known as a natural mitochondrial specific inhibitor of F(1)-ATPase activity, inhibits ecto-F(1)-ATPase activity and decreases HDL endocytosis by both human hepatocytes and perfused rat liver. METHODOLOGY/PRINCIPAL FINDINGS: Since recent reports also described the presence of IF1 at the plasma membrane of different cell types, we investigated whether IF1 is present in the systemic circulation in humans. We first unambiguously detected IF1 in human serum by immunoprecipitation and mass spectrometry. We then set up a competitive ELISA assay in order to quantify its level in human serum. Analyses of IF1 levels in 100 normolipemic male subjects evidenced a normal distribution, with a median value of 0.49 µg/mL and a 95% confidence interval of 0.22-0.82 µg/mL. Correlations between IF1 levels and serum lipid levels demonstrated that serum IF1 levels are positively correlated with HDL-cholesterol and negatively with triglycerides (TG). CONCLUSIONS/SIGNIFICANCE: Altogether, these data support the view that, in humans, circulating IF1 might affect HDL levels by inhibiting hepatic HDL uptake and also impact TG metabolism.


Assuntos
HDL-Colesterol/metabolismo , Mitocôndrias/metabolismo , Proteínas/metabolismo , Idoso , Glicemia/metabolismo , Índice de Massa Corporal , Membrana Celular/metabolismo , Endocitose , Feminino , Regulação da Expressão Gênica , Células HeLa , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes/metabolismo , Proteína Inibidora de ATPase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA