Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 253: 112476, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38171045

RESUMO

The fungal cell wall and cell membrane are an important target for antifungal therapies, and a needle-like cell wall or membrane disruption may be an entirely novel antifungal mode of action. In this work, we show how the coordination of Zn(II) triggers the antifungal properties of shepherin II, a glycine- and histidine-rich antimicrobial peptide from the root of Capsella bursa-pastoris. We analyze Cu(II) and Zn(II) complexes of this peptide using experimental and theoretical methods, such as: mass spectrometry, potentiometry, UV-Vis and CD spectroscopies, AFM imaging, biological activity tests and DFT calculations in order to understand the correlation between their metal binding mode, structure, morphology and biological activity. We observe that Zn(II) coordinates to Shep II and causes a structural change, resulting in fibril formation, what has a pronounced biological consequence - a strong anticandidal activity. This phenomenon was observed neither for the peptide itself, nor for its copper(II) complex. The Zn(II) - shepherin II complex can be considered as a starting point for further anticandidal drug discovery, which is extremely important in the era of increasing antifungal drug resistance.


Assuntos
Candida albicans , Complexos de Coordenação , Candida albicans/metabolismo , Antifúngicos/química , Química Bioinorgânica , Zinco/química , Peptídeos/química , Cobre/química , Complexos de Coordenação/química
2.
J Inorg Biochem ; 252: 112456, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38154408

RESUMO

Histidine are one of the most common residues involved in transition metal ion binding in the active sites of metalloenzymes. In order to mimic enzymatic metal binding sites, it is crucial to understand the basic coordination modes of histidine residues, distributed at different positions in the peptide sequence. We show that: (i) the separation of two histidines has a large effect on complex stability - a sequence with adjusting histidine residues forms more stable complexes with Zn(II) than the one in which the residues are separated, while the contrary is observed for Cu(II) complexes, in which amide nitrogens participate in metal binding. No pronounced effect is observed for Ni(II) complexes, where the amides participate in binding at higher pH; (ii) non-coordinating amino acid residues (basic, acidic and aromatic ones) have a significant impact on complex stability; charged and aromatic residues may enhance Zn(II) binding, while the contrary is observed for the amide-binding Cu(II); (iii) cysteine containing sequences are much more effective Zn(II) and Ni(II) binding motifs at pH above 8, while histidine containing ligands are more suitable for effective Zn(II) and Ni(II) binding at lower pH.


Assuntos
Histidina , Amidas , Sequência de Aminoácidos , Sítios de Ligação , Cobre/química , Histidina/química , Metais/metabolismo
3.
Inorg Chem ; 62(48): 19786-19794, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37983127

RESUMO

Shepherin I is a glycine- and histidine-rich antimicrobial peptide from the root of a shepherd's purse, whose antimicrobial activity was suggested to be enhanced by the presence of Zn(II) ions. We describe Zn(II) and Cu(II) complexes of this peptide, aiming to understand the correlation between their metal binding mode, structure, morphology, and biological activity. We observe a logical sequence of phenomena, each of which is the result of the previous one: (i) Zn(II) coordinates to shepherin I, (ii) causes a structural change, which, in turn, (iii) results in fibril formation. Eventually, this chain of structural changes has a (iv) biological consequence: The shepherin I-Zn(II) fibrils are highly antifungal. What is of particular interest, both fibril formation and strong anticandidal activity are only observed for the shepherin I-Zn(II) complex, linking its structural rearrangement that occurs after metal binding with its morphology and biological activity.


Assuntos
Capsella , Antifúngicos/farmacologia , Peptídeos Antimicrobianos , Peptídeos , Zinco/farmacologia
4.
Sci Rep ; 13(1): 18228, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880318

RESUMO

The main limitation to the use of antimicrobial peptides (AMPs) as regular drugs, against antibiotic and antifungal resistance, mainly relates to their rapid degradation by proteolytic enzymes. The introduction of suitable structural changes in the peptide chain can make the peptide less susceptible to the action of proteases, thus overcoming this problem. To improve the plasma stability of calcitermin, a metal-chelating AMP present in the human respiratory tract and investigated in the present study, C- and/or N- terminal modifications have been introduced in the native sequence. Evaluation of peptide stability has been performed to determine the half-life times in human plasma of both native calcitermin and its derivatives. However, the protection of the peptide termini can also affect its metal coordination behaviour. Thus, the characterization of Zn2+ and Cu2+ complexes has been performed by means of several techniques, including potentiometry, high-resolution mass spectrometry, UV-Vis, circular dichroism and EPR. On the basis of the obtained results, it was possible to compare the biological activity of the studied systems, taking into account both the metal-binding ability and the peptide stability to search for a link among them. A significant result of this study is that the N-terminal protection increases the calcitermin half-life over seven times and the formation of metal complexes confers resistance towards degradation almost doubling its half-life.


Assuntos
Anti-Infecciosos , Peptídeos , Humanos , Antibacterianos/química , Quelantes/farmacologia , Quelantes/química , Dicroísmo Circular , Cobre/química , Espectrometria de Massas , Peptídeos/química
5.
Molecules ; 28(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241727

RESUMO

Histidine and cysteine residues, with their imidazole and thiol moieties that deprotonate at approximately physiological pH values, are primary binding sites for Zn(II), Ni(II) and Fe(II) ions and are thus ubiquitous both in peptidic metallophores and in antimicrobial peptides that may use nutritional immunity as a way to limit pathogenicity during infection. We focus on metal complex solution equilibria of model sequences encompassing Cys-His and His-Cys motifs, showing that the position of histidine and cysteine residues in the sequence has a crucial impact on its coordination properties. CH and HC motifs occur as many as 411 times in the antimicrobial peptide database, while similar CC and HH regions are found 348 and 94 times, respectively. Complex stabilities increase in the series Fe(II) < Ni(II) < Zn(II), with Zn(II) complexes dominating at physiological pH, and Ni(II) ones-above pH 9. The stabilities of Zn(II) complexes with Ac-ACHA-NH2 and Ac-AHCA-NH2 are comparable, and a similar tendency is observed for Fe(II), while in the case of Ni(II), the order of Cys and His does matter-complexes in which the metal is anchored on the third Cys (Ac-AHCA-NH2) are thermodynamically stronger than those where Cys is in position two (Ac-ACHA-NH2) at basic pH, at which point amides start to take part in the binding. Cysteine residues are much better Zn(II)-anchoring sites than histidines; Zn(II) clearly prefers the Cys-Cys type of ligands to Cys-His and His-Cys ones. In the case of His- and Cys-containing peptides, non-binding residues may have an impact on the stability of Ni(II) complexes, most likely protecting the central Ni(II) atom from interacting with solvent molecules.


Assuntos
Peptídeos Antimicrobianos , Cisteína , Cisteína/química , Histidina/química , Metais/química , Peptídeos/química , Compostos Ferrosos , Cobre/química
6.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614204

RESUMO

The three Schiff base ligands, derivatives of hesperetin, HHSB (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]isonicotinohydrazide), HIN (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]benzhydrazide) and HTSC (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]thiosemicarbazide) and their copper complexes, CuHHSB, CuHIN, and CuHTSC were designed, synthesized and analyzed in terms of their spectral characterization and the genotoxic activity. Their structures were established using several methods: elemental analysis, FT-IR, UV-Vis, EPR, and ESI-MS. Spectral data showed that in the acetate complexes the tested Schiff bases act as neutral tridentate ligand coordinating to the copper ion through two oxygen (or oxygen and sulphur) donor atoms and a nitrogen donor atom. EPR measurements indicate that in solution the complexes keep their structures with the ligands remaining bound to copper(II) in a tridentate fashion with (O-, N, Oket) or (O-, N, S) donor set. The genotoxic activity of the compounds was tested against model tumour (HeLa and Caco-2) and normal (LLC-PK1) cell lines. In HeLa cells the genotoxicity for all tested compounds was noticed, for HHSB and CuHHSB was the highest, for HTSC and CuHTSC-the lowest. Generally, Cu complexes displayed lower genotoxicity to HeLa cells than ligands. In the case of Caco-2 cell line HHSB and HTSC induced the strongest breaks to DNA. On the other side, CuHHSB and CuHTSC induced the highest DNA damage against LLC-PK1.


Assuntos
Complexos de Coordenação , Cobre , Humanos , Cobre/farmacologia , Cobre/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células HeLa , Células CACO-2 , Oxigênio , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes
7.
Sci Rep ; 12(1): 20543, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446825

RESUMO

The antimicrobial properties of amylin, a 37-amino acid peptide hormone, co-secreted with insulin from the pancreas, are far less known than its antidiabetic function. We provide insight into the bioinorganic chemistry of amylin analogues, showing that the coordination of zinc(II) enhances the antifungal properties of pramlintide, a non-fibrillating therapeutic analogue of amylin. Zinc binds to the N-terminal amino group and His18 imidazole, inducing a kink in the peptide structure, which, in turn, triggers a fibrillization process of the complex, resulting in an amyloid structure most likely responsible for the disruption of the fungal cell.


Assuntos
Antifúngicos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Antifúngicos/farmacologia , Insulina , Zinco/farmacologia
8.
Inorg Chem ; 61(36): 14247-14251, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36039984

RESUMO

It is supposed that the presence of poly-His regions in close proximity to poly-Gly domains in snake venoms is related to their biological activity; poly-His/poly-Gly (pHpG) peptides inhibit the activity of metalloproteinases during venom storage via the chelation metal ions, necessary for their proper functioning. This work shows that only the histidyl residues from the N-terminal VDHDHDH motif (but not from the poly-His tag) were the primary Zn(II) binding sites and that the poly-Gly domain situated in the proximity of a central proline residue may play a regulatory role in venom gland protection. The proline induces a kink of the peptide, resulting in steric hindrance, which may modulate the accessibility of potential metal binding sites in the poly-His domain and may, in turn, be one of the regulators of Zn(II) accessibility in the venom gland and therefore a modulator of metalloproteinase activity during venom storage.


Assuntos
Peptídeos , Venenos de Serpentes , Sequência de Aminoácidos , Sítios de Ligação , Peptídeos/química , Prolina
9.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948007

RESUMO

Combined potentiometric titration and isothermal titration calorimetry (ITC) methods were used to study the interactions of nickel(II) ions with the N-terminal fragments and histidine-rich fragments of Hpn-like protein from two Helicobacter pylori strains (11637 and 26695). The ITC measurements were performed at various temperatures and buffers in order to extract proton-independent reaction enthalpies of nickel binding to each of the studied protein fragments. We bring up the problem of ITC results of nickel binding to the Hpn-like protein being not always compatible with those from potentiometry and MS regarding the stoichiometry and affinity. The roles of the ATCUN motif and multiple His and Gln residues in Ni(II) binding are discussed. The results provided the possibility to compare the Ni(II) binding properties between N-terminal and histidine-rich part of Hpn-like protein and between N-terminal parts of two Hpn-like strains, which differ mainly in the number of glutamine residues.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/classificação , Níquel/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Calorimetria , Glutamina/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Histidina/metabolismo , Potenciometria , Domínios Proteicos
10.
Int J Mol Sci ; 22(13)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203496

RESUMO

The antimicrobial activity of surfactant-associated anionic peptides (SAAPs), which are isolated from the ovine pulmonary surfactant and are selective against the ovine pathogen Mannheimia haemolytica, is strongly enhanced in the presence of Zn(II) ions. Both calorimetry and ITC measurements show that the unique Asp-only peptide SAAP3 (DDDDDDD) and its analogs SAAP2 (GDDDDDD) and SAAP6 (GADDDDD) have a similar micromolar affinity for Zn(II), which binds to the N-terminal amine and Asp carboxylates in a net entropically-driven process. All three peptides also bind Cu(II) with a net entropically-driven process but with higher affinity than they bind Zn(II) and coordination that involves the N-terminal amine and deprotonated amides as the pH increases. The parent SAAP3 binds Cu(II) with the highest affinity; however, as shown with potentiometry and absorption, CD and EPR spectroscopy, Asp residues in the first and/or second positions distinguish Cu(II) binding to SAAP3 and SAAP2 from their binding to SAAP6, decreasing the Cu(II) Lewis acidity and suppressing its square planar amide coordination by two pH units. We also show that these metal ions do not stabilize a membrane disrupting ability nor do they induce the antimicrobial activity of these peptides against a panel of human pathogens.


Assuntos
Cobre/metabolismo , Peptídeos/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Zinco/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/patogenicidade , Peptídeos/metabolismo , Termodinâmica
11.
J Inorg Biochem ; 213: 111275, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091731

RESUMO

Often, in the search for a highly defined scientific phenomenon, a different one becomes apparent. This was also the case of this work, in the scope of which we planned to search for metal-enhanced, novel antibacterial/antifungal compounds. Instead, we denied the existence of such and revealed the details of the bioinorganic chemistry of Zn(II)-alloferon complexes. Zinc(II) complexes of alloferon 1 and 2, ligands with a sequential difference of one amino acid only, show a substantially different coordination pattern at physiological pH. In the case of Zn(II)-alloferon 1 species, a histamine-like binding mode is observed (N-terminal amine and imidazole of His-1) and the coordination sphere is completed with the imidazole nitrogens of His-6 and His-9; His-12 is not involved in binding. In the case of Zn(II)-alloferon 2, the N-terminal amine and all the three imidazoles present in the sequence participate in the coordination, however, with the chemical shift of His-5 being less affected than those of other imidazoles. The histamine-like binding in Zn(II)-alloferon 1 complex strongly enhances its thermodynamic stability in comparison to the His-1 lacking alloferon 2 analogue. Despite previous reports on the antibacterial and antifungal activity of alloferon 1, no such activity was detected, neither for alloferon 1 and 2 nor for their Zn(II) complexes.


Assuntos
Complexos de Coordenação/química , Peptídeos/química , Zinco/química , Sequência de Aminoácidos , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Histidina/química , Ligantes , Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Espectroscopia de Prótons por Ressonância Magnética/métodos , Relação Estrutura-Atividade , Termodinâmica
12.
Inorg Chem ; 59(4): 2527-2535, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32027132

RESUMO

Protein aggregation has attracted substantial interest because of its role in causing many serious illnesses, such as neurodegenerative diseases and type II diabetes. Recent studies have shown that protein aggregation can be prevented by forming metal ion complexes with a target protein, which affects their conformation in solution and their physical properties, such as aggregation. Thus, understanding the interactions between aggregating molecules and bioactive metal ions such as Cu2+ is beneficial for new drug discovery. Pramlintide, a synthetic peptide drug, and its natural counterpart rat amylin are known to be resistant to aggregation because of the presence of proline residues, which are usually ß-sheet "breakers" within their amino acid sequence. Here, we investigate the Cu2+ coordination properties of pramlintide and rat amylin using nuclear magnetic resonance, circular dichroism, electron paramagnetic resonance, ultraviolet-visible spectroscopy, potentiometry, and mass spectrometry. We test the influence of Cu2+ on the aggregation properties of these amylin analogues with thioflavin T assays. We find that both peptides form stable complexes with Cu2+ with similar affinities at a 1:1 ratio. The N-termini of both peptides are involved in Cu2+ binding; His18 imidazole is an equally attractive binding site in the case of pramlintide. Our results show that Cu2+ ions influence the aggregation of pramlintide, but not that of rat amylin.


Assuntos
Cobre/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Complexos de Coordenação/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Ratos
13.
Metallomics ; 11(12): 1988-1998, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31737884

RESUMO

Candida albicans is a widespread human pathogen which can infect humans at different levels. Like the majority of microorganisms, it needs transition metals as micronutrients for its subsistence. In order to acquire these nutrients from the host, C. albicans employs various strategies, also involving chelating proteins specifically expressed to sequester metals from the environment. A histidine-rich protein sequence identified in the C. albicans genome, named C4YJH2, has been recently studied for its putative role in Zn(ii) transport. Two outer membrane major histidine-rich clusters of C4YJH2, namely the domains 131-148 (FHEHGHSHSHGSGGGGGG) and 157-165 (SHSHSHSHS), have been confirmed as strong binding sites for the Cu(ii) and Zn(ii) ions. Nevertheless, the 9-residue "linker" sequence 148-156 (GSDHSGDSK) between the two His-rich fragments of C4YJH2, containing an additional His residue, can also contribute to metal binding. In the present work, the protected peptide Ac-GSDHSGDSK-NH2 and some analogues (Ac-GSDHSGASK-NH2, Ac-GADHAGDAK-NH2, Ac-GSDH-NH2, and Ac-HSGD-NH2) have been synthesized and their metal binding properties have been studied in detail. The thermodynamics of complex-formation equilibria of the above reported ligands with Cu(ii) and Zn(ii) ions have been studied by potentiometry in a wide pH range and the stoichiometry of the formed species has been confirmed by mass spectrometry; the most likely solution structures of the metal complexes are also discussed on the basis of NMR, UV-vis, circular dichroism (CD) and EPR data. The results show the importance of Asp7 in the stabilization of Zn(ii) complexes and suggest a significant role of the (quite abundant) Ser residues in the task of metal uptake and regulation.


Assuntos
Candida albicans/metabolismo , Cobre/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fragmentos de Peptídeos/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Candida albicans/química , Candida albicans/fisiologia , Candidíase/metabolismo , Candidíase/microbiologia , Dicroísmo Circular , Cobre/química , Proteínas Fúngicas/química , Humanos , Espectrometria de Massas/métodos , Proteínas de Membrana Transportadoras/química , Fragmentos de Peptídeos/química , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Termodinâmica , Zinco/química
14.
Inorg Chem ; 58(17): 11782-11792, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31433630

RESUMO

Reproduction of the dominant vector of Zika and dengue diseases, Aedes aegypti mosquito, is controlled by an active heterodimer complex composed of the 20-hydroxyecdysone receptor (EcR) and ultraspiracle protein. Although A. aegypti EcR shares the structural and functional organization with other nuclear receptors, its C-terminus has an additional long F domain (AaFEcR). Recently, we showed that the full length AaFEcR is intrinsically disordered with the ability to specifically bind divalent metal ions. Here, we describe the details of the exhaustive structural and thermodynamic properties of Zn2+- and Cu2+-complexes with the AaFEcR domain, based on peptide models of its two putative metal binding sites (Ac-HGPHPHPHG-NH2 and Ac-QQLTPNQQQHQQQHSQLQQVHANGS-NH2). Unexpectedly, only in the presence of increasing concentrations of Cu2+ ions, the Ac-HGPHPHPHG-NH2 peptide gained a metal ion-induced poly-l-proline type II helical structure, which is unique for members of the family of nuclear receptors.


Assuntos
Aedes/efeitos dos fármacos , Antivirais/farmacologia , Cobre/farmacologia , Compostos Organometálicos/farmacologia , Peptídeos/farmacologia , Receptores de Esteroides/antagonistas & inibidores , Animais , Antivirais/química , Sítios de Ligação/efeitos dos fármacos , Cobre/química , Dengue/tratamento farmacológico , Dengue/metabolismo , Estrutura Molecular , Compostos Organometálicos/química , Peptídeos/química , Receptores de Esteroides/metabolismo , Termodinâmica , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/metabolismo
15.
J Inorg Biochem ; 199: 110783, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31349072

RESUMO

Protein-protein interactions play important roles for a variety of cell functions, often involving metal ions; in fact, metal-ion binding mediates and regulates the activity of a wide range of biomolecules. Enlightening all of the specific features of metal-protein and metal-mediated protein-protein interactions can be a very challenging task; a detailed knowledge of the thermodynamic and spectroscopic parameters and the structural changes of the protein is normally required. For this purpose, many experimental techniques are employed, embracing all fields of Analytical and Bioinorganic Chemistry. In addition, the use of peptide models, reproducing the primary sequence of the metal-binding sites, is also proved to be useful. In this paper, a review of the most useful techniques for studying ligand-protein interactions with a special emphasis on metal-protein interactions is provided, with a critical summary of their strengths and limitations.


Assuntos
Metais/química , Proteínas/química , Sítios de Ligação , Cinética , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteínas/metabolismo
16.
Inorg Chem ; 58(9): 5932-5942, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986048

RESUMO

Cluster 2 (288HDDDNAHAHTH298) from Neisseria meningitidis ZnuD is a flexible loop that captures zinc(II) ions, acting as a "fishing net". We describe its Zn(II) and Cu(II) binding capabilities, focusing on the thermodynamics of such interactions and comparing them with the complexes of the 1MAHHHHHHL9-NH2 region. Copper(II) complexes with the studied ZnuD regions are thermodynamically more stable than the zinc(II) ones-Cu(II) complexes dominate in solution even in close to physiological ratios of the studied metal ions (a 10-fold excess of Zn(II) over Cu(II)). While the binding of native Zn(II) has no significant impact on the structure of its transporter, Cu(II) binding induces a conformational change of cluster 2 to a polyproline II-like helix. To the best of our knowledge, this is the first evidence of a copper(II)-induced formation of a polyproline II-like structure in a sequence that does not contain proline residues. Cu(II) coordination also changes the structure of an intracellular, N-terminal, His-rich region, folding it to an α helix.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Neisseria meningitidis/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Cobre/química , Humanos , Infecções Meningocócicas/microbiologia , Modelos Moleculares , Neisseria meningitidis/química , Ligação Proteica , Termodinâmica , Zinco/química
17.
Curr Med Chem ; 26(4): 624-647, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28933286

RESUMO

Silver is a non-essential element with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, particularly as antibacterial and antifungal agents and in cancer therapy, are discussed in detail. The most recent data on silver nanoparticles are also summarized.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Complexos de Coordenação/química , Prata/química , Sequência de Aminoácidos , Aminoácidos/química , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/farmacologia , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Complexos de Coordenação/efeitos adversos , Complexos de Coordenação/farmacologia , Descoberta de Drogas/métodos , Humanos , Íons/química , Nanopartículas Metálicas/química , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
18.
J Inorg Biochem ; 180: 101-118, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247867

RESUMO

Fisetin (3,3',4',7-tetrahydroxyflavone) metal chelates are of interest as this plant polyphenol has revealed broad prospects for its use as natural medicine in the treatment of various diseases. Metal interactions may change or enhance fisetin biological properties so understanding fisetin metal chelation is important for its application not only in medicine but also as a food additive in nutritional supplements. This work was aimed to determine and characterize copper complexes formed in different pH range at applying various metal/ligand ratios. Fisetin and Cu(II)-fisetin complexes were characterized by potentiometric titrations, UV-Vis (Ultraviolet-visible spectroscopy), EPR, ESI-MS, FTIR and cyclic voltammetry. Their effects on DNA were investigated by using circular dichroism, spectrofluorimetry and gel electrophoresis methods. The copper complex with the ratio of Cu(II)/fisetin 1/2 exhibited significant DNA cleavage activity, followed by complete degradation of DNA. The influence of copper(II) ions on antioxidant activity of fisetin in vitro has been studied using DPPH, ABTS and mitochondrial assays. The results have pointed out that fisetin or copper complexes can behave both as antioxidants or pro-oxidants. Antimicrobial activity of the compounds has been investigated towards several bacteria and fungi. The copper complex of Cu(II)/fisetin 1/2 ratio showed higher antagonistic activity against bacteria comparing to the ligand and it revealed a promising antifungal activity.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/química , Quelantes/química , Cobre/química , DNA/química , Flavonoides/química , Anti-Infecciosos/química , Antioxidantes/farmacologia , Quelantes/farmacologia , Cobre/farmacologia , Eletroforese em Gel de Poliacrilamida , Flavonoides/farmacologia , Flavonóis , Concentração de Íons de Hidrogênio , Análise Espectral/métodos
19.
J Inorg Biochem ; 163: 258-265, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26952650

RESUMO

The basic knowledge about biological inorganic chemistry, thermodynamics and metal binding sites of metalloproteins is crucial for the understanding of their metal binding-structure-function relationship. Metal-peptide complexes are useful and commonly used models of metal-enzyme active sites, among which copper and zinc models are one of the most extensively studied. HENRYK is a peptide sequence present in numerous proteins, and serves as a potentially tempting binding site for Cu2+ and Zn2+. Maybe more importantly, HENRYK also happens to be the first name of our group leader. The results of this work, which, at the first glance, might seem to be a 'chemical scrabble', went far beyond our expectations and surprised us with a novel, uncommon behavior of a Cu2+ complex with a peptide with a histidine in position one. At low pH, the binding is a typical histamine-like coordination, but with the increase of pH, the imidazole nitrogen is moved to the axial position and replaced with an amide; at basic pH, the binding mode is a {NH2, 3N-} one in the equatorial plane. It is important to note, that no dimeric species are formed in between. Such binding is thermodynamically much more stable than a simple complex with histamine, and quite comparable to complexes with several possible imidazole anchoring sites.


Assuntos
Complexos de Coordenação/química , Cobre/química , Peptídeos/química , Zinco/química , Histamina/química , Concentração de Íons de Hidrogênio
20.
Dalton Trans ; 43(44): 16680-9, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25266233

RESUMO

Copper complexes of a poly-His/poly-Gly peptide (EDDHHHHHHHHHGVGGGGGGGGGG-NH2), a natural component of a snake venom, were studied by means of both experimental (thermodynamic, spectroscopic and MS) techniques and molecular dynamics (MD) simulations and density functional theory (DFT) calculations. This peptide proved to be an exceptionally effective copper chelator, forming complexes which are thermodynamically more stable than those formed by both the albumin-like ATCUN motif and several other poly-histidine protein fragments. We show that, in a poly-histidine stretch, copper seems to prefer binding to residues separated by one amino acid and that a correlation between an α-helical structure of the predicted complexes and their thermodynamic stability is observed.


Assuntos
Complexos de Coordenação/química , Cobre/química , Peptídeos/química , Venenos de Víboras/química , Animais , Histidina/química , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Viperidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA