Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Med Phys ; 41(4): 041907, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24694138

RESUMO

PURPOSE: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) Cerenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. METHODS: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on Cerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Cerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (∼ 1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. RESULTS: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. CONCLUSIONS: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an avalanche gain in the AMFPI and is quantum noise limited at dose levels corresponding to a single Linac pulse.


Assuntos
Ar , Tomografia Computadorizada de Feixe Cônico/instrumentação , Luz , Método de Monte Carlo , Teoria Quântica , Aceleradores de Partículas , Doses de Radiação , Incerteza
2.
Phys Med Biol ; 58(15): 5215-35, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23851978

RESUMO

Contrast-enhanced digital mammography (CEDM) can provide improved breast cancer detection and characterization compared to conventional mammography by imaging the effects of tumour angiogenesis. Current small-molecule contrast agents used for CEDM are limited by a short plasma half-life and rapid extravasation into tissue interstitial space. To address these limitations, nanoscale agents that can remain intravascular except at sites of tumour angiogenesis can be used. For CEDM, this agent must be both biocompatible and strongly attenuate mammographic energy x-rays. Nanoscale perfluorooctylbromide (PFOB) droplets have good x-ray attenuation and have been used in patients for other applications. However, the macroscopic scale of x-ray imaging (50-100 µm) is inadequate for direct verification that PFOB droplets localize at sites of breast tumour angiogenesis. For efficient pre-clinical optimization for CEDM, we integrated an optical marker into PFOB droplets for microscopic assessment (≪50 µm). To develop PFOB droplets as a new nanoscale mammographic contrast agent, PFOB droplets were labelled with fluorescent quantum dots (QDs). The droplets had mean diameters of 160 nm, fluoresced at 635 nm and attenuated x-ray spectra at 30.5 keV mean energy with a relative attenuation of 5.6 ± 0.3 Hounsfield units (HU) mg(-1) mL(-1) QD-PFOB. With the agent loaded into tissue phantoms, good correlation between x-ray attenuation and optical fluorescence was found (R(2) = 0.96), confirming co-localization of the QDs with PFOB for quantitative assessment using x-ray or optical methods. Furthermore, the QDs can be removed from the PFOB agent without affecting its x-ray attenuation or structural properties for expedited translation of optimized PFOB droplet formulations into patients.


Assuntos
Meios de Contraste/química , Fluorocarbonos/química , Mamografia/métodos , Nanoestruturas , Fenômenos Ópticos , Animais , Linhagem Celular , Hidrocarbonetos Bromados , Camundongos , Imagens de Fantasmas , Raios X
3.
Med Phys ; 39(7Part4): 4640, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28516656

RESUMO

PURPOSE: With high specificity for malignant breast lesions, dedicated-breast molecular imaging systems such as positron emission mammography (PEM) have potential to improve the sensitivity of cancer in women with radio-dense breasts and to reduce the false-positive rate of breast screening when used as a diagnostic adjunct. For high signal-to-noise ratio and to minimize the patient dose, scintillation detectors in a PEM system must have high annihilation photon detection efficiency. This efficiency can be increased by accepting annihilation photons from wider incident angles and by using depth-of-interaction (DOI) measurement within a scintillation crystal to minimize parallax blurring. We have developed a dual-ended readout block (DERB) detector that uses asymmetry of signals from photodetectors on either end of a scintillation array to measure DOI and uses Anger Logic with light sharing to identify interacting crystal elements while minimizing the number of photodetectors required. METHODS: A prototype DERB detector was constructed from two arrays of silicon photomultipliers (SiPM), two glass optical diffusers, and an array of LYSO scintillation crystals. Assembled, each of the 2 × 2 SiPM arrays detect photons that are dispersed via the optical light diffusers originating from either end of 3 × 3 scintillation crystal elements. We evaluated the ability of the detector to identify the crystal index, resolve DOI, and discriminate energy. RESULTS: The DERB detector was able to clearly identify interacting crystal elements, to measure DOI with ̃5mm resolution in 2mm × 2mm × 20mm crystals, and to achieve an average energy resolution of ̃20%. CONCLUSIONS: The DERB detector characteristics suggest that it can be used to reduce the parallax effect in PEM systems without increasing the number of required photodetectors. Further investigation is warranted to improve performance with high optical photon detection efficiency photodetectors.

4.
Med Phys ; 36(5): 1717-26, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19544789

RESUMO

Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (approximately 1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.


Assuntos
Aorta/cirurgia , Aortografia/instrumentação , Implante de Prótese de Valva Cardíaca/instrumentação , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Proteção Radiológica/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Implante de Prótese de Valva Cardíaca/métodos , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Med Phys ; 36(4): 1086-97, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19472613

RESUMO

A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.


Assuntos
Valva Aórtica/cirurgia , Próteses Valvulares Cardíacas , Valva Aórtica/diagnóstico por imagem , Cateterismo Cardíaco , Campos Eletromagnéticos , Elétrons , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetismo , Modelos Estatísticos , Imagens de Fantasmas , Radiografia , Raios X
6.
Med Phys ; 35(9): 4049-62, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18841857

RESUMO

In order to improve the safety and efficacy of percutaneous aortic valve replacement procedures, a closed bore hybrid x-ray/MRI (CBXMR) system is proposed in which an x-ray C-arm will be positioned with its isocenter approximately =1 m from the entrance of a clinical MRI scanner. This system will harness the complementary strengths of both modalities to improve clinical outcome. A key component of the CBXMR system will be a rotating anode x-ray tube to produce high-quality x-ray images. There are challenges in positioning an x-ray tube in the magnetic fringe field of the MRI magnet. Here, the effects of an external magnetic field on x-ray tube induction motors of radiography x-ray tubes and the corresponding reduction of x-ray tube heat loadability are investigated. Anode rotation frequency f(aode) was unaffected when the external magnetic field Bb was parallel to the axis of rotation of the anode but decreased when Bb was perpendicular to the axis of rotation. The experimental f(anode) values agreed with predicted values to within +/-3% over a Bb range of 0-30 mT. The MRI fringe field at the proposed location of the x-ray tube mounted on the C-arm (approximately =4 mT) reduced f(anode) by only 1%, so x-ray tube heat loadability will not be compromised when using CBXMR systems for percutaneous aortic valve replacement procedures. Eddy current heating power in the rotor due to an MRI fringe field was found to be two orders of magnitude weaker than the heating power produced on the anode due to a fluoroscopic exposure, so eddy current heating had no effect on x-ray tube heat loadability.


Assuntos
Valva Aórtica/cirurgia , Campos Eletromagnéticos , Próteses Valvulares Cardíacas , Temperatura Alta/efeitos adversos , Valva Aórtica/diagnóstico por imagem , Eletrodos , Humanos , Imageamento por Ressonância Magnética , Radiografia , Raios X
7.
Phys Med Biol ; 53(4): 999-1013, 2008 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-18263954

RESUMO

Cone beam digital tomosynthesis (CBDT) is a new imaging technique proposed recently as a rapid approach for creating tomographic images of a patient in the radiotherapy treatment room. The purpose of this work is to investigate the feasibility of performing megavoltage (MV) CBDT clinically. A clinical investigational MV-CBDT system was installed on an existing LINAC. After the installation, the treatment machine can be operated in two distinct modes: (1) normal clinical treatment mode; (2) CBDT mode, in which tomographic images of the patient can be obtained using MV-CBDT. Various calibration and phantom measurements were performed on the system, followed by a patient study. Our phantom measurements have shown that: (1) for the same imaging dose, MV-CBDT has the same signal-difference-to-noise ratio as megavoltage cone beam computed tomography (MV-CBCT); (2) MV-CBDT has a better spatial resolution than MV-CBCT in the planes of reconstruction but a worse spatial resolution in the direction perpendicular to the planes of reconstruction. MV-CBDT patient images were also obtained and compared to that of MV-CBCT. We have demonstrated that it is clinically feasible to perform MV-CBDT in the treatment room for image-guided radiotherapy.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Radioterapia Assistida por Computador/métodos , Calibragem , Humanos , Imagens de Fantasmas
8.
Med Phys ; 35(12): 5207-18, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19175080

RESUMO

The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10(-7)-10(-2) R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction of x rays in the gain region. Thus, HARP-AMFPI is a promising flat-panel imager structure that enables high-resolution fully quantum noise limited x-ray imaging over a wide exposure range.


Assuntos
Diagnóstico por Imagem/instrumentação , Radiografia/instrumentação , Algoritmos , Tecnologia Biomédica , Diagnóstico por Imagem/métodos , Eletrônica , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Mamografia/instrumentação , Modelos Estatísticos , Imagens de Fantasmas , Teoria Quântica , Radiografia/métodos , Selênio , Ecrans Intensificadores para Raios X , Raios X
9.
Med Phys ; 35(12): 5672-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19175124

RESUMO

The x-ray light valve (XLV) is a novel, potentially low-cost, x-ray detector that converts an x-ray exposure into an optical image stored in a liquid crystal cell. This optical image is then transferred from the liquid crystal cell to a computer through an optical-to-digital imaging readout system. Previously, CCD-based cameras were used for the optical readout, but recently it was proposed that an inexpensive optical scanner, such as an office document scanner, is a better match to the optical properties of the XLV. A methodology for characterizing a document scanner's ability to produce medical quality images from the XLV is outlined and tested on a particular scanner (Canon LiDE 30). This scanner was shown to have key characteristics of a medical device-a linear response, dynamic range sufficient for chest radiography (although not mammography) in a single pass, and an MTF and NPS that exceed the requirements for all medical applications of the scanner. This combination of criteria shows that a document scanner can be used as a digitization method for the XLV.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Raios X , Calibragem , Desenho de Equipamento , Equipamentos e Provisões , Humanos , Mamografia/métodos , Modelos Estatísticos , Óptica e Fotônica , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Software , Fatores de Tempo , Interface Usuário-Computador
10.
Med Phys ; 35(7Part2): 3404, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28512837

RESUMO

Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room for image-guided radiation therapy. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus is not adequate for imaging targets with intrafraction motion. In this work, a new concept for image-guided radiation therapy- just-in-time tomography (JiTT) - is introduced. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. A system to achieve JiTT is proposed and its feasibility is investigated. Research supported by Siemens.

11.
Med Phys ; 34(8): 3358-73, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17879799

RESUMO

Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 microm and the blocking layer thicknesses varied from 1 to 51 microm. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was approximately 200 microm. As expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk.


Assuntos
Mamografia/instrumentação , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Selênio/química , Raios X , Algoritmos , Alumínio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Imagens de Fantasmas , Platina/química , Radiometria , Planejamento da Radioterapia Assistida por Computador , Sensibilidade e Especificidade , Transdutores
12.
Med Phys ; 33(11): 4258-70, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17153404

RESUMO

Most electronic portal imaging devices (EPIDs) developed so far use a Cu plate/phosphor screen to absorb x rays and convert their energies into light, and the light image is then read out. The main problem with this approach is that the Cu plate/phosphor screen must be thin (approximately 2 mm thick) in order to obtain a high spatial resolution, resulting in a low x-ray absorption or low quantum efficiency for megavoltage x rays (typically 2-4%). In addition, the phosphor screen contains high atomic number (high-Z) materials, resulting in an over-response of the detector to low-energy x rays in dosimetric verification. In this paper, we propose a new approach that uses Cerenkov radiation to convert x-ray energy absorbed by the detector into light for portal imaging applications. With our approach, a thick (approximately 10-30 cm) energy conversion layer made of a low-Z dielectric medium, such as a large-area, thick fiber-optic taper consisting of a matrix of optical fibers aligned with the incident x rays, is used to replace the thin Cu plate/phosphor screen. The feasibility of this approach has been investigated using a single optical fiber embedded in a solid material. The spatial resolution expressed by the modulation transfer function (MTF) and the sensitivity of the detector at low doses (approximately one Linac pulse) have been measured. It is predicted that, using this approach, a detective quantum efficiency of an order of magnitude higher at zero frequency can be obtained while maintaining a reasonable MTF, as compared to current EPIDs.


Assuntos
Radiometria/instrumentação , Radiometria/métodos , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/métodos , Ecrans Intensificadores para Raios X , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Med Phys ; 33(5): 1499-509, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16752584

RESUMO

Indirect flat panel imagers have been developed for digital radiography, fluoroscopy and mammography, and are now in clinical use. Screens made from columnar structured cesium iodide (CsI) scintillators doped with thallium have been used extensively in these detectors. The purpose of this article is to investigate the effect of screen optics, e.g., light escape efficiency versus depth, on gain fluctuation noise, expressed as the Swank factor. Our goal is to obtain results useful in optimizing screens for digital radiography systems. Experimental measurements from structured CsI samples were used to derive their screen optics properties, and the same methods can also be applied to powder screens. CsI screens, all of the same thickness but with different optical designs and manufacturing techniques, were obtained from Hamamatsu Photonics Corporation. The pulse height spectra (PHS) of the screens were measured at different x-ray energies. A theoretical model was developed for the light escape efficiency and a method for deriving light escape efficiency versus depth from experimental PHS measurements was implemented and applied to the CsI screens. The results showed that the light escape efficiency varies essentially linearly as a function of depth in the CsI samples, and that the magnitude of variation is relatively small, leading to a high Swank factor.


Assuntos
Artefatos , Óptica e Fotônica/instrumentação , Intensificação de Imagem Radiográfica/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Ecrans Intensificadores para Raios X , Algoritmos , Análise de Falha de Equipamento , Teoria Quântica , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Med Phys ; 32(9): 2954-66, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16266110

RESUMO

An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d(Se) and the applied electric field E(Se) of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E(Se) dependence of both avalanche gain and optical quantum efficiency of an 8 microm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E(Se): (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 microm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.


Assuntos
Radiografia/instrumentação , Ecrans Intensificadores para Raios X , Césio , Estudos de Viabilidade , Iodetos , Mamografia/instrumentação , Imagens de Fantasmas , Selênio
15.
Med Phys ; 32(10): 3160-77, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16279070

RESUMO

Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously, (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/ microm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S0) of the a-Se layers was 63 +/- 2 nC cm(-2) cGy(-1). It was found that S decreases to 30% of S0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25 +/- 0.1 x 10(22) ehp m(-3) s(-1) and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a strong dependence on the ghosting dose: hole transport decreased by 61%, electron transport by up to approximately 80%. Therefore, degradation of both hole and electron transport due to the recombination of mobile charge carriers with trapped carriers (of opposite polarity) were identified as the main cause of ghosting in this study.


Assuntos
Algoritmos , Artefatos , Modelos Químicos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Selênio/química , Selênio/efeitos da radiação , Ecrans Intensificadores para Raios X , Simulação por Computador , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Espalhamento de Radiação , Selênio/análise , Raios X
16.
Phys Med Biol ; 50(21): N323-30, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16237232

RESUMO

Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room and guide the radiation therapy treatment. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus it is not adequate for imaging targets with intrafraction motion. In this note, a new approach for image-guided radiation therapy-just-in-time tomography (JiTT)-is proposed. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment.


Assuntos
Intensificação de Imagem Radiográfica/métodos , Radioterapia/métodos , Tomografia/métodos , Algoritmos , Cabeça/patologia , Humanos , Processamento de Imagem Assistida por Computador , Aceleradores de Partículas , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador , Fatores de Tempo , Raios X
17.
Technol Cancer Res Treat ; 4(1): 61-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15649089

RESUMO

Early diagnosis of breast cancer is crucial for effective treatment, and the need exists for greater detection ability and specificity than possible by screening x-ray mammography (currently the primary imaging technique for the detection of breast lesions). Positron Emission Tomography (PET) using the radiotracer 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) offers a noninvasive, highly sensitive method for the diagnosis of breast cancer. Images from PET contain unique metabolic information that is not available from anatomical imaging techniques. We propose a Positron Emission Mammography (PEM) imaging system that maintains the established high specificity of FDG PET while providing improved collection efficiency for the radiotracer signal and the potential for images with better spatial resolution. This PEM system will enable detection of lesions that are considerably smaller than those that can be visualized using whole body PET imaging. The compact dual-head PEM camera will be based on an amorphous selenium (a-Se) avalanche photodetector and the scintillator lutetium oxyorthosilicate (LSO). The camera promises high collection efficiency by combining the fast scintillation light decay and high light yield of LSO with the excellent quantum efficiency, large avalanche gain, and rapid response time of a-Se. We have measured the gain and readout time of an 8 microm a-Se layer and demonstrated the feasibility of the proposed PEM camera.


Assuntos
Neoplasias da Mama/diagnóstico , Mamografia/instrumentação , Mamografia/métodos , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Selênio , Neoplasias da Mama/diagnóstico por imagem , Cristalização , Câmaras gama , Humanos , Fatores de Tempo
18.
Med Phys ; 31(11): 3004-16, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15587653

RESUMO

Most electronic portal imaging devices (EPIDs) developed to date, including recently developed flat panel systems, have low x-ray absorption, i.e., low quantum efficiency (QE) of 2%-4% as compared to the theoretical limit of 100%. A significant increase of QE is desirable for applications such as a megavoltage cone-beam computed tomography (MVCT) and megavoltage fluoroscopy. However, the spatial resolution of an imaging system usually decreases significantly with an increase of QE. The key to the success in the design of a high QE detector is therefore to maintain the spatial resolution. Recently, we demonstrated theoretically that it is possible to design a portal imaging detector with both high QE and high resolution [see Pang and Rowlands, Med. Phys. 29, 2274 (2002)]. In this paper, we introduce such a novel design consisting of a large number of microstructured plates (made by, e.g., photolithographic patterning of evaporated or electroplated layers) packed together and aligned with the incident x rays. On each plate, microstrip charge collectors are focused toward the x-ray source to collect charges generated in the ionization medium (e.g., air or gas) surrounded by high-density materials that act as x-ray converters. The collected charges represent the x-ray image and can be read out by various means, including a two-dimensional (2-D) active readout matrix. The QE, spatial resolution, and sensitivity of the detector have been calculated. It has been shown that the new design will have a QE of more than an order of magnitude higher and a spatial resolution equivalent to that of flat panel systems currently used for portal imaging. The new design is also quantum noise limited down to very low doses (approximately 1-2 radiation pulses of the linear accelerator).


Assuntos
Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Transdutores , Ecrans Intensificadores para Raios X , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Teoria Quântica , Doses de Radiação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
19.
Med Phys ; 30(2): 254-63, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12607843

RESUMO

Our work is to investigate and understand the factors affecting the imaging performance of amorphous selenium (a-Se) flat-panel detectors for digital mammography. Both theoretical and experimental methods were developed to investigate the spatial frequency dependent detective quantum efficiency [DQE(f)] of a-Se flat-panel detectors for digital mammography. Since the K edge of a-Se is 12.66 keV and within the energy range of a mammographic spectrum, a theoretical model was developed based on cascaded linear system analysis with parallel processes to take into account the effect of K fluorescence on the modulation transfer function (MTF), noise power spectrum (NPS), and DQE(f) of the detector. This model was used to understand the performance of a small-area prototype detector with 85 microm pixel size. The presampling MTF, NPS, and DQE(f) of the prototype were measured, and compared to the theoretical calculation of the model. The calculation showed that K fluorescence accounted for a 15% reduction in the MTF at the Nyquist frequency (fNy) of the prototype detector, and the NPS at fNy was reduced to 89% of that at zero spatial frequency. The measurement of presampling MTF of the prototype detector revealed an additional source of blurring, which was attributed to charge trapping in the blocking layer at the interface between a-Se and the active matrix. This introduced a drop in both presampling MTF and NPS at high spatial frequency, and reduced aliasing in the NPS. As a result, the DQE(f) of the prototype detector at fNy approached 40% of that at zero spatial frequency. The measured and calculated DQE(f) using the linear system model have reasonable agreement, indicating that the factors controlling image quality in a-Se based mammographic detectors are fully understood, and the model can be used to further optimize detector imaging performance.


Assuntos
Análise de Falha de Equipamento/métodos , Modelos Lineares , Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/métodos , Selênio , Artefatos , Simulação por Computador , Desenho de Equipamento , Análise de Fourier , Modelos Teóricos , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processos Estocásticos
20.
Int J Radiat Oncol Biol Phys ; 52(2): 532-7, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11872301

RESUMO

PURPOSE: To improve an online portal imaging system such that implanted cylindrical gold markers of small diameter (no more than 1.0 mm) can be visualized. These small markers would make the implantation procedure much less traumatic for the patient than the large markers (1.6 mm in diameter), which are usually used today to monitor prostate interfraction motion during radiation therapy. METHODS AND MATERIALS: Several changes have been made to a mirror-video based online imaging system to improve image quality. First, the conventional camera tube was replaced by an avalanche-multiplication-based video tube. This new camera tube has very high gain at the target such that the camera noise, which is one of the main causes of image degradation of online portal imaging systems, was overcome and effectively eliminated. Second, the conventional linear-accelerator (linac) target was replaced with a low atomic number (low-Z) target such that more diagnostic X-rays are present in the megavoltage X-ray beam. Third, the copper plate buildup layer for the phosphor screen was replaced by a thin plastic layer for detection of the diagnostic X-ray components in the beam generated by the low-Z target. RESULTS: Radiopaque fiducial gold markers of different sizes, i.e., 1.0 mm (diameter) x 5 mm (length) and 0.8 mm (diameter) x 3 mm (length), embedded in an Alderson Rando phantom, can be clearly seen on the images acquired with our improved system. These markers could not be seen on images obtained with any commercial system available in our clinic. CONCLUSION: This work demonstrates the visibility of small-diameter radiopaque markers with an improved online portal imaging system. These markers can be easily implanted into the prostate and used to monitor the interfraction motion of the prostate.


Assuntos
Movimento , Imagens de Fantasmas , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/instrumentação , Desenho de Equipamento , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Próteses e Implantes , Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tecnologia Radiológica/instrumentação , Tecnologia Radiológica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA