Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 102(3): 457-470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36856306

RESUMO

Multidrug resistance in breast cancer and the associated side-effects of anticancer therapies are significant hurdles in chemotherapy-based treatment. Biodegradable polymeric nano-based targeted drug delivery technologies showed tremendous advantages in targeted local delivery with limited off-targeted side effects. Therefore, there is a persistent need to develop targeted nanomedicine systems for treatment of breast cancer. The current research attempted to develop poly (lactic-co-glycolic acid) nanoparticles loaded with raloxifene by modified emulsification solvent diffusion evaporation method to improve oral bioavailability by using Taguchi design. It was observed that the optimized formulation (1:4 drug to polymer ratio) poly (lactic-co-glycolic acid) showed a mean particle size and Polydispersity index of 218 ± 23.7 nm and 0.231 ± 0.04, respectively. The entrapment efficiency was found to be 82.30% ± 1.02%. In vitro drug delivery was found to be 92.5% ± 1.48% in 40 h. The nanoparticles were to remain stable at 2°C-8°C even after 30 days. Differential scanning calorimetry and Fourier transform infrared spectroscopy characterization techniques showed that there was no interaction between the drug and excipient. Stability studies indicate that polymeric nanoparticles were stable at 2°C-8°C after 6 months. Raloxifene nanoparticles may be the most potent targeting moieties to treat highly invasive and metastatic MCF-7 breast cancer cells.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cloridrato de Raloxifeno , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Ácido Poliglicólico/química , Ácido Láctico/química , Tamanho da Partícula , Nanopartículas/química
2.
J Basic Microbiol ; 63(6): 573-583, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36720046

RESUMO

Spirulina platensis is a photosynthetic, blue-green, spiral- or bulb-shaped microalgae. Due to the presence of minerals, vitamins, pigments (carotenes, phycocyanin and chlorophyll) proteins (55%-70%), carbohydrates (15%-25%), and essential fatty acids (5%-8%), it has been used as a nutritional supplement for decades. NASA successfully employed it as a nutritional supplement for astronauts on space missions then its popularity was increased. The chemical composition of Spirulina, which is rich in vitamins, minerals, phenolics, vital fatty acids, amino acids, and pigments, can be beneficial to human health when incorporated into meals. The pharmacological effects include antibacterial, anticancer, metalloprotective, immune-stimulating, and antioxidant. It modulates immunological activities and possesses anti-inflammatory qualities by preventing mast cells from releasing histamine. Due to its high quantity of protein, carbohydrate, lipid, vital amino and fatty acids, dietary minerals and vitamins, Spirulina exerts the abovementioned benefits. In this review, up-to-date and possible biological aspects, patents applied on Spirulina and heights of confirmation are addressed, and the extent of current and future exploration is also explored.


Assuntos
Microalgas , Spirulina , Humanos , Spirulina/metabolismo , Minerais/metabolismo , Carboidratos , Ácidos Graxos/metabolismo , Vitaminas/metabolismo
3.
Curr Top Med Chem ; 23(30): 2877-2972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164722

RESUMO

Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.


Assuntos
Neoplasias , Inibidores de Proteínas Quinases , Humanos , Receptores ErbB , Janus Quinases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo
4.
Braz. J. Pharm. Sci. (Online) ; 58: e201144, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420507

RESUMO

Abstract The current research focused on screening and finding the significant independent variables in stavudine loaded tablet, followed by optimizing the best formulation using central composite design. The objective of the study to develop stavudine loaded controlled release tablet utilizing reduced factorial design, followed by optimization technique as well as characterization of prepared tablets. Preliminary trial batches were prepared using different grades of hydroxypropyl methylcellulose. The resolution-IV reduced factorial design was selected to screen the significant independent variables in the dosage form design. A total number of eight runs were prepared and responses were recorded. The signified factors identified by half-normal and Pareto chart. The prepared tablets are evaluated for various physiochemical characterizations. Three dependent responses such as hardness, dissolution at 6 hour and 12 hours are considered in optimization process. Later on, drug-polymer interaction study was carried out. The principal of the study design based on finding the best formulation with prefixed set parameter values utilizing the concept of screening technique. It observed that HPMC K15M (57.18 %), HPMC K100 (66.32 %) and PVP K30 (7.97 %) as best composition in a formulation batch would fulfill the predetermined parameter with specific values.


Assuntos
Estavudina/administração & dosagem , Otimização de Processos , Derivados da Hipromelose/classificação , Liberação Controlada de Fármacos , Comprimidos/administração & dosagem , Preparações Farmacêuticas/análise
5.
Curr Drug Targets ; 22(5): 590-604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32720601

RESUMO

BACKGROUND: Hepatitis C Virus (HCV) belongs to the Hepacivirus family. HCV has been designated as a very dreadful virus as it can attack the liver, causing inflammation and even may lead to cancer in chronic conditions. It was estimated that 71 million people around the world have chronic HCV infection. World Health Organization (WHO) reported that about 399000 people died because of chronic cirrhosis and liver cancer globally. In spite of the abundance of availability of drugs for the treatment of HCV, however, the issue of drug resistance surpasses all the possibilities of therapeutic management of HCV. Therefore, to address this issue of 'drug-resistance', various HCV targets were explored to quest the evaluation of the mechanism of the disease progression. METHODS: An attempt has been made in the present study to explore the various targets of HCV involved in the mechanism(s) of the disease initiation and progression and to focus on the mode of binding of ligands, which are co-crystallized at the active cavity of different HCV targets. CONCLUSION: The present study could predict some crucial features of these ligands, which possibly interacted with various amino acid residues responsible for their biological activity and molecular signaling pathway(s). Such binding mode may be considered as a template for the high throughput screening and designing of active congeneric ligands to combat HCV.


Assuntos
Antivirais , Hepatite C , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Humanos , Ligantes
6.
Curr Pharm Des ; 26(15): 1666-1675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32013823

RESUMO

BACKGROUND: Recently, in the medical and pharmaceutical fields, biopolymers are extensively used for chemical and mechanical modifications of pharmaceutical dosage forms, which add novel properties, functions, and applications. Structural modification of dosage form by polymers along with redesigning in pharmaceutical and tissue engineering fields, presently being the center of analysis for the modern research world, which utilizes the subtle instruments, precise research strategies and most significantly the excipients. METHOD: The polymer, chitosan, which is a natural linear polysaccharide composed of randomly distributed ß-(1- 4)-linked D-Glucosamine and N-acetyl-D-Glucosamine units. Chitosan has been used by researchers as a network forming or gelling agent as chitosan is economically available, possesses low immunogenicity, biocompatibility, non-toxicity, biodegradability, protects against secretion from irritation and does not suffer the danger of transmission animal infective agent. Recent studies have proved that the chitosan conjugated in various biopharmaceutical drug formulations, such as nanoparticles, have been used for the treatment of breast, skin, colon, pancreatic, prostate and lung cancer. The nanoparticles have gained significant attention of scientific groups for relevant cancer-targeting drugs and dosage form. In this connection, several articles been published on chitosan anchored nanoparticles by suitable techniques, such as ion gelation, complexation, solvent evaporation, emulsion droplet coalescence and polymerization. RESULTS: The most remarkable point is that chitosan-drug conjugated nanoparticles (CDNP) can target cancer affected cells with the least attempt to killing the neighbor host cell. It is already proved that the CDNP facilitate the more drugs uptaking or cytotoxicity to a cancerous cell. This overcomes the dosage form designing problems of complexity in the biological mechanism and cell specificity. A computer-aided pharmacokinetic study as well as in-silico design with model fitting can provide the possible finding related to target selectivity and interaction. The computer aided study also reduces time and could make the entire process much cheaper till today, very few research has been reported, such as PyRx with AutoDock, response surface methodology and molecular dynamic simulation in drug delivery for chitosan-drug conjugated nanoparticles. CONCLUSION: Therefore, cancer cell target-specific drug delivery using a natural biopolymer conjugate with a computer-aided pharmacokinetic model will be the thirst area of future research. To get successful anticancer drug formulation, in-silico pharmacokinetic modeling would minimize labor, and expenses, during and prior to the experiment has been extensively discussed in the present review.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos , Neoplasias/tratamento farmacológico
7.
Curr Drug Discov Technol ; 17(4): 534-541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31971111

RESUMO

BACKGROUND: Derived from polyose, chitosan is an outstanding natural linear polysaccharide comprised of random arrangement of ß-(1-4)-linked D-Glucosamine and N-acetyl-DGlucosamine units. OBJECTIVE: Researchers have been using chitosan as a network forming or gelling agent with economically available, present polyose, low immunogenicity, biocompatibility, non-toxicity, biodegradability, protects against secretion from irritation and don't suffer the danger of transmission animal infective agent. METHODS: Furthermore, recent studies gear up the chitosan used in the development of various biopharmaceutical formulations, including nanoparticles, hydrogels, implants, films, fibers, etc. Results: These formulations produce potential activities as antimicrobials, cancer treatment, medical aid, and wound healing, controlled unleash device or drug trigger retarding device and 3DBiomedical sponge, etc. Conclusion: The present article discusses the development of various drug formulations utilizing chitosan as biopolymers for the repairing of broken tissues and healing in case of wound infection.


Assuntos
Antibacterianos/administração & dosagem , Quitosana/química , Portadores de Fármacos/química , Pele/lesões , Cicatrização/efeitos dos fármacos , Administração Cutânea , Animais , Antibacterianos/farmacocinética , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Humanos , Hidrogéis/química , Ativação de Macrófagos/efeitos dos fármacos , Nanopartículas/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/microbiologia , Absorção Cutânea/efeitos dos fármacos , Cicatrização/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA