Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(6): 3715-3723, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723225

RESUMO

A majority of short peptide (≤7 amino acids) hydrogels are primarily assembled via cross ß-structure formation. In contrast to the natural trend, herein, we report the formation of supramolecular hydrogel from the ultrashort hybrid folded peptide composed of canonical α-amino acid and noncanonical γ-amino acid, Fmoc-γPhe-Phe-OH. The designed hybrid peptide hydrogel is composed of entangled fibers, has viscoelastic properties, exhibits proteolytic stability, and exhibits cytocompatibility with L929 fibroblast cells. Mutating the peptide sequence by altering the position of γPhe from the N-termini to C-termini transforms the self-assembly into crystalline aggregates. Combining FTIR, 2D NMR, and DFT calculations revealed that the hydrogel-forming peptide adopts a C9 H-bonded conformation, resembling the well-known γ-turn. However, the isomeric hybrid peptide adopts an extended structure. The present study highlights the importance of secondary structure in the higher order assembly of minimalist hybrid peptides and broadens the range of secondary structures to design short peptide-based hydrogels.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Peptídeos/química , Camundongos , Estrutura Secundária de Proteína , Animais , Fibroblastos/efeitos dos fármacos
2.
Biomacromolecules ; 25(6): 3271-3287, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38712837

RESUMO

Tuning self-assembling pathways by implementing different external stimuli has been extensively studied, owing to their effective control over structural and mechanical properties. Consequently, multicomponent peptide hydrogels with high structural tunability and stimuli responsiveness are crucial in dictating cellular behavior. Herein, we have implemented both coassembly approach and pathway-dependent self-assembly to design nonequilibrium nanostructures to understand the thermodynamic and kinetic aspects of peptide self-assembly toward controlling cellular response. Our system involved an ultrashort peptide gelator and a hydrophilic surfactant which coassembled through different pathways, i.e., heat-cool and sonication methods with variable energy input. Interestingly, it was possible to access diverse structural and mechanical properties at the nanoscale in a single coassembled system. Further, the hydrophilic surfactant provided additional surface functionalities, thus creating an efficient hydrophilic matrix for cellular interaction. Such diverse functionalities in a single coassembled system could lead to the development of advanced scaffolds, with applications in various biomedical fields.


Assuntos
Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Peptídeos , Hidrogéis/química , Peptídeos/química , Nanoestruturas/química , Tensoativos/química , Humanos , Animais
3.
Chembiochem ; 25(8): e202300835, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38390634

RESUMO

Self-assembled hydrogels, fabricated through diverse non-covalent interactions, have been extensively studied in regenerative medicines. Inspired from bioactive functional motifs of ECM protein, short peptide sequences have shown remarkable abilities to replicate the intrinsic features of the natural extracellular milieu. In this direction, we have fabricated two short hydrophobic bioactive sequences derived from the laminin protein i. e., IKVAV and YIGSR. Based on the substantial hydrophobicity of these peptides, we selected a co-solvent approach as a suitable gelation technique that included different concentrations of DMSO as an organic phase along with an aqueous solution containing 0.1 % TFA. These hydrophobic laminin-based bioactive peptides with limited solubility in aqueous physiological environment showed significantly enhanced solubility with higher DMSO content in water. The enhanced solubility resulted in extensive intermolecular interactions that led to the formation of hydrogels with a higher-order entangled network along with improved mechanical properties. Interestingly, by simply modulating DMSO content, highly tunable gels were accessed in the same gelator domain that displayed differential physicochemical properties. Further, the cellular studies substantiated the potential of these laminin-derived hydrogels in enhancing cell-matrix interactions, thereby reinforcing their applications in tissue engineering.


Assuntos
Dimetil Sulfóxido , Hidrogéis , Hidrogéis/química , Solventes , Peptídeos/química , Laminina/química
4.
Biomacromolecules ; 24(11): 4923-4938, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37909341

RESUMO

Recently, peptide and sugar-based multicomponent systems have gained much interest in attaining the sophisticated structure and biofunctional complexity of the extracellular matrix (ECM). To this direction, we have designed for the first time a biologically relevant minimalist Cardin-motif peptide capable of binding ECM-derived glycosaminoglycans. Herein, we explored Cardin-motif peptide and heparin-based biomolecular matrix by employing simple noncovalent interactions at the molecular level. Interestingly, this peptide was inadequate to induce hydrogelation at ambient pH due to the presence of basic amino acids. However, addition of heparin successfully triggered its gelation at physiological pH following favorable electrostatic interactions with heparin. Importantly, the newly developed scaffolds displayed tunable nanofibrous morphology and superior mechanical properties as controlled simply by the differential mixing ratio of both biomolecular entities. Additionally, these composite scaffolds could closely mimic the complexity of ECM as they demonstrated superior biocompatibility and enhanced growth and proliferation of neural cells as compared to the peptide scaffold.


Assuntos
Heparina , Hidrogéis , Hidrogéis/química , Heparina/farmacologia , Heparina/química , Peptídeos/farmacologia , Peptídeos/química , Matriz Extracelular/química , Glicosaminoglicanos/metabolismo , Alicerces Teciduais/química
5.
Nanoscale ; 15(16): 7537-7558, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022122

RESUMO

Short bioactive peptide-based supramolecular hydrogels are emerging as interesting candidates for developing scaffolds for tissue engineering applications. However, proteins and peptides represent only a single class of molecules present in the native ECM, thus, recapitulating the complete ECM microenvironment via only peptide-based biomaterials is extremely challenging. In this direction, complex multicomponent-based biomaterials have started gaining importance for achieving the biofunctional complexity and structural hierarchy of the native ECM. Sugar-peptide complexes can be explored in this direction as they provide essential biological signaling required for cellular growth and survival in vivo. In this direction, we explored the fabrication of an advanced scaffold by employing heparin and short bioactive peptide interactions at the molecular level. Interestingly, the addition of heparin into the peptide has significantly modulated the supramolecular organization, nanofibrous morphology and the mechanical properties of the scaffold. Additionally, the combined hydrogels demonstrated superior biocompatibility as compared to the peptide counterpart at certain ratios. These newly developed scaffolds were also observed to be stable under 3-D cell culture conditions and supported cellular adhesion and proliferation. Most importantly, the inflammatory response was also minimized in the case of combined hydrogels as compared to heparin. We expect that this approach of using simple non-covalent interactions between the ECM-inspired small molecules to fabricate biomaterials with improved mechanical and biological properties could advance the current knowledge on designing ECM mimetic biomaterials. Such an attempt would create a novel, adaptable and simplistic bottom-up strategy for the invention of new and more complex biomaterials of ECM origin with advanced functions.


Assuntos
Matriz Extracelular , Heparina , Heparina/farmacologia , Heparina/química , Matriz Extracelular/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Engenharia Tecidual , Peptídeos/farmacologia , Peptídeos/química , Hidrogéis/farmacologia , Hidrogéis/química , Alicerces Teciduais
6.
ACS Biomater Sci Eng ; 9(3): 1422-1436, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36826412

RESUMO

It has been increasingly evident over the last few years that bioactive peptide hydrogels in conjugation with polymer hydrogels are emerging as a new class of supramolecular materials suitable for various biomedical applications owing to their specificity, tunability, and nontoxicity toward the biological system. Despite their unique biocompatible features, both polymer- and peptide-based scaffolds suffer from certain limitations, which restrict their use toward developing efficient matrices for controlling cellular behavior. The peptide hydrogels usually form soft matrices with low mechanical strength, whereas most of the polymer hydrogels lack biofunctionality. In this direction, combining polymers with peptides to develop a conjugate hydrogel can be explored as an emergent approach to overcome the limitations of the individual components. The polymer will provide high mechanical strength, whereas the biofunctionality of the material can be induced by the bioactive peptide sequence. In this study, we utilized TEMPO-oxidized nanofibrillar cellulose as the polymer counterpart, which was co-assembled with a short N-cadherin mimetic bioactive peptide sequence, Nap-HAVDI, to fabricate an NFC-peptide conjugate hydrogel. Interestingly, the mechanical strength of the peptide hydrogel was found to be significantly improved by combining the peptide with the NFC in the conjugate hydrogel. The addition of the peptide into the NFC also reduced the pore size within NFC matrices, which further helped in improving cellular adhesion, survival, and proliferation. Furthermore, the cells grown on the NFC and NFC-peptide hybrid hydrogel demonstrated normal expression of cytoskeleton proteins, i.e., ß-tubulin in C6 cells and actin in L929 cells, respectively. The selective response of neuronal cells toward the specific bioactive peptide was further observed through a protein expression study. Thus, our study demonstrated the collective role of the cellulose-peptide composite material that revealed superior physical properties and biological response of this composite scaffold, which may open up a new platform for biomedical applications.


Assuntos
Celulose , Hidrogéis , Celulose/análise , Celulose/química , Hidrogéis/química , Matriz Extracelular , Adesão Celular , Peptídeos/química
7.
Nanoscale Adv ; 4(16): 3381-3390, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131706

RESUMO

In recent years, due to high energy consumption in the building sector and subsequent environmental issues, environment-friendly and cost-effective thermally insulating materials are in high demand to improve the energy efficiency of buildings. Current commercially available thermal insulating materials (polystyrene) always pose a challenge due to their non-biodegradability and poor insulating performance. To this end, biomass-derived aerogels are attracting significant interest as renewable and sustainable insulating materials. In this work, we have developed a facile strategy for synthesizing cellulose nanofibers from biomass-derived wood pulp as a cost-effective starting material by TEMPO-oxidation, and further incorporating iron oxide nanoparticles to make a nanohybrid. Interestingly, in these nanohybrids, the functional attributes like mechanical strength and flammability were improved to a great extent and thus overcoming the limitations of the commercially available thermal insulating materials in terms of their stability and durability. Most importantly, these nanohybrids demonstrated very low thermal conductivity, as low as 0.024 W m-1 K-1, indicating the better insulating potential of these nanohybrids as compared to other conventional insulating materials.

8.
Biomacromolecules ; 23(6): 2496-2511, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35522599

RESUMO

Multicomponent self-assembly is an emerging approach in peptide nanotechnology to develop nanomaterials with superior physical and biological properties. Inspired by the multicomponent nature of the native extracellular matrix (ECM) and the well-established advantages of co-assembly in the field of nanotechnology, we have attempted to explore the noncovalent interactions among the sugar and peptide-based biomolecular building blocks as an approach to design and develop advanced tissue scaffolds. We utilized TEMPO-oxidized nanofibrillar cellulose (TO-NFC) and a short ionic complementary peptide, Nap-FEFK, to fabricate highly tunable supramolecular hydrogels. The differential doping of the peptide into the TO-NFC hydrogel was observed to tune the surface hydrophobicity, microporosity, and mechanical stiffness of the scaffold. Interestingly, a differential cellular response was observed toward composite scaffolds with a variable ratio of TO-NFC versus Nap-FEFK. Composite scaffolds having a 10:1 (w/w) ratio of TO-NFC and the Nap-FEFK peptide showed enhanced cellular survival and proliferation under two-dimensional cell culture conditions. More interestingly, the cellular proliferation on the 10:1 matrix was found to be similar to that of Matrigel in three-dimensional culture conditions, which clearly indicated the potential of these hydrogels in advanced tissue engineering applications. Additionally, these composite hydrogels did not elicit any significant inflammatory response in Raw cells and supported their survival and proliferation, which further emphasized their ability to form versatile scaffolds for tissue regeneration. This multicomponent assembly approach to construct biomolecular composite hydrogels to access superior physical and biological properties within the scaffold is expected to improve the scope for designing novel ECM-mimicking biomaterials for regenerative medicine.


Assuntos
Celulose Oxidada , Hidrogéis , Óxidos N-Cíclicos , Hidrogéis/química , Peptídeos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Macromol Biosci ; 22(5): e2100462, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35257490

RESUMO

Noncovalent interactions among short peptides and proteins lead to their molecular self-assembly into supramolecular packaging, which provides the fundamental basis of life. These biomolecular assemblies are highly susceptible to the environmental conditions, including temperature, light, pH, and ionic concentration, and thus inspiring the fabrication of a new class of stimuli-responsive biomaterials. Here, for the first time the cooperative effect of the divalent metal ions to promote hydrogelation in the short collagen inspired self-assembling peptide for developing advanced biomaterials is reported. Introduction of the biologically relevant metal ions (Ca2+ /Mg2+ ) to the peptide surpasses its limitation to self-assemble into a multiscale structure at physiological pH. In particular, in presence of metal ions, the negatively charged peptide shows a distinct shift in its equilibrium point of gelation and demonstrates conversion from sol to gel and thus enabling the scope of fabricating an advanced biomaterial for controlling cellular behavior. Interestingly, tunable mechanical strength and improved cellular response are observed within ion-coordinated peptide hydrogels compared to the peptide gelator. Microscopic analyses, rheological assessment, and biological studies establish the importance of utilizing a novel strategy by simply using metal ions to modulate the physical and biological attributes of collagen inspired peptide (CIPs) to construct next-generation biomaterials.


Assuntos
Hidrogéis , Peptídeos , Materiais Biocompatíveis/farmacologia , Proliferação de Células , Colágeno , Hidrogéis/química , Hidrogéis/farmacologia , Íons/química , Peptídeos/química , Peptídeos/farmacologia
10.
J Mater Chem B ; 9(29): 5898-5913, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34263278

RESUMO

The development of suitable biomaterials is one of the key factors responsible for the success of the tissue-engineering field. Recently, significant effort has been devoted to the design of biomimetic materials that can elicit specific cellular responses and direct new tissue formation mediated by bioactive peptides. The success of the design principle of such biomimetic scaffolds is mainly related to the cell-extracellular matrix (ECM) interactions, whereas cell-cell interactions also play a vital role in cell survival, neurite outgrowth, attachment, migration, differentiation, and proliferation. Hence, an ideal strategy to improve cell-cell interactions would rely on the judicious incorporation of a bioactive motif in the designer scaffold. In this way, we explored for the first time the primary functional pentapeptide sequence of the N-cadherin protein, HAVDI, which is known to be involved in cell-cell interactions. We have formulated the shortest N-cadherin mimetic peptide sequence utilizing a minimalistic approach. Furthermore, we employed a classical molecular self-assembly strategy through rational modification of the basic pentapeptide motif of N-cadherin, i.e. HAVDI, using Fmoc and Nap aromatic moieties to modify the N-terminal end. The designed N-cadherin mimetic peptides, Fmoc-HAVDI and Nap-HAVDI, self-assembled to form a nanofibrous network resulting in a bioactive peptide hydrogel at physiological pH. The nanofibrous network of the pentapeptide hydrogels resembles the topology of the natural ECM. Furthermore, the mechanical strength of the gels also matches that of the native ECM of neural cells. Interestingly, both the N-cadherin mimetic peptide hydrogels supported cell adhesion and proliferation of the neural and non-neural cell lines, highlighting the diversity of these peptidic scaffolds. Further, the cultured neural and non-neural cells on the bioactive scaffolds showed normal expression of ß-III tubulin and actin, respectively. The cellular response was compromised in control peptides, which further establishes the significance of the bioactive motifs towards controlling the cellular behaviour. Our study indicated that our designer N-cadherin-based peptidic hydrogels mimic the structural as well as the physical properties of the native ECM, which has been further reflected in the functional attributes offered by these scaffolds, and thus offer a suitable bioactive domain for further use as a next-generation material in tissue-engineering applications.


Assuntos
Materiais Biomiméticos/farmacologia , Caderinas/farmacologia , Peptídeos/farmacologia , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Caderinas/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Peptídeos/síntese química , Peptídeos/química , Ratos
11.
Biomater Sci ; 9(11): 3911-3938, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33973582

RESUMO

Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Materiais Biocompatíveis , Peptídeos , Polímeros
12.
Biomacromolecules ; 22(6): 2393-2407, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33973785

RESUMO

Peptide self-assembly is gathering much attention due to the precise control it provides for the arrangement of functional moieties for the fabrication of advanced functional materials. It is desirable to use a physical, chemical, or biological trigger that can control the self-assembly process. In the current article, we have applied an enzyme to induce the peptide self-assembly of an aromatic peptide amphiphile, which modulates the supramolecular order in the final gel phase material. We accessed diverse peptide hydrogels from identical gelator concentrations by simply changing the enzyme concentration, which controlled the reaction kinetics and influenced the dynamics of self-assembly. Depending upon the concentration of the enzyme, a bell-shaped relationship was observed in terms of intermolecular interactions, morphology, and properties of the final gel phase material. The access of non-equilibrium structures was further demonstrated by fluorescence emission spectroscopy, circular dichroism spectroscopy, atomic force microscopy, transmission electron microscopy, and rheology. This strategy is applied to construct a charge-transfer hydrogel by doping the donor hydrogel with an acceptor moiety, which exhibits efficient energy transfer. Interestingly, such structural control at the nanoscopic level can further tune the energy-transfer efficiency by simply modulating the enzyme concentration.


Assuntos
Dipeptídeos , Hidrogéis , Transferência de Energia , Peptídeos , Pirenos
13.
Soft Matter ; 17(12): 3266-3290, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33730140

RESUMO

The phenomenal advancement in regenerative medicines has led to the development of bioinspired materials to fabricate a biomimetic artificial extracellular matrix (ECM) to support cellular survival, proliferation, and differentiation. Researchers have diligently developed protein polymers consisting of functional sequences of amino acids evolved in nature. Nowadays, certain repetitive bioinspired polymers are treated as an alternative to synthetic polymers due to their unique properties like biodegradability, easy scale-up, biocompatibility, and non-covalent molecular associations which imparts tunable supramolecular architecture to these materials. In this direction, elastin has been identified as a potential scaffold that renders extensibility and elasticity to the tissues. Elastin-like polypeptides (ELPs) are artificial repetitive polymers that exhibit lower critical solution temperature (LCST) behavior in a particular environment than synthetic polymers and hence have gained extensive interest in the fabrication of stimuli-responsive biomaterials. This review discusses in detail the unique structural aspects of the elastin and its soluble precursor, tropoelastin. Furthermore, the versatility of elastin-like peptides is discussed through numerous examples that bolster the significance of elastin in the field of regenerative medicines such as wound care, cardiac tissue engineering, ocular disorders, bone tissue regeneration, etc. Finally, the review highlights the importance of exploring short elastin-mimetic peptides to recapitulate the structural and functional aspects of elastin for advanced healthcare applications.


Assuntos
Elastina , Hidrogéis , Materiais Biocompatíveis , Engenharia Biomédica , Matriz Extracelular , Proteínas da Matriz Extracelular , Engenharia Tecidual
14.
Biomacromolecules ; 21(10): 4180-4193, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786522

RESUMO

In recent years, the molecular self-assembly approach has witnessed a sudden surge in coassembly strategy to achieve extensive control over accessing diverse nanostructures and functions. To this direction, peptide-peptide coassembly has been explored to some extent in the literature, but protein-peptide coassembly is still in its infancy for controlling the self-assembling properties. To the best of our knowledge, our study illustrated the merits of protein-peptide coassembly toward inducing gelation to a nongelator dipeptide sequence, for the first time. This simplistic approach could provide access to diverse mechanical and structural properties within a single gelator domain at identical concentrations with a simple variation in the protein concentrations. Interestingly, the protein-peptide interactions could transform aggregate-like structures into fibrillar nanostructures. The study attempts to provide the proof of concept for the nonspecific protein-peptide interactions purely based on simple noncovalent interactions. The range of dissociation constants and binding energies obtained from bioloyer interferometry and docking studies confirmed the involvement of noncovalent interactions in protein-peptide coassembly, which triggers gelation. Moreover, different binding affinities of a protein toward an individual peptide essentially demonstrated a route to achieve precise control over differential self-assembling properties. Another important aspect of this study was entrapment of an enzyme protein within the gel network during coassembly without inhibiting enzyme activity, which can serve as a scaffold for catalytic reactions. The present study highlights the nonconventional way of protein-peptide interactions in triggering self-assembly in a nonassembling precursor. We anticipate that fundamental insights into the intermolecular interactions would lead to novel binary supramolecular hydrogels that can be developed as a next generation biomaterial for various biomedical applications.


Assuntos
Nanoestruturas , Peptídeos , Dipeptídeos , Hidrogéis
15.
Mater Sci Eng C Mater Biol Appl ; 108: 110483, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924040

RESUMO

Controlling the self-assembly pathways through solvent mediated approach can be an effective means to create complex, multifunctional structures. However, predicting the effect of solvent environment on both solubility of the monomer and their self-assembling behaviour remains a challenge. Our work mainly aims to understand the role of solvents in driving the supramolecular self-assembly of structurally related bioinspired pentapeptides (IKVAV and YIGSR), derived from native laminin protein. The exploration of the short sequences from this useful functional protein is still in its infancy. An N-terminal hydrophobic modification of IKVAV and YIGSR has been used to illustrate the gelator-gelator and gelator-solvent intermolecular interactions. Microscopic investigation of hydrophobic derivatives showed the transformation of fibrous morphology to sheet like structures, on varying solvent polarity from aqueous-organic mixture to aqueous solvent. Interestingly, these gels possess mechano-responsive and thermo-reversible properties, which also showed the remarkable solvent susceptibility. Our study clearly indicates that judicious choice of solvents may help in designing new soft materials with controlled properties, lesser defects and higher reproducibility.


Assuntos
Laminina/química , Peptídeos/química , Solventes/química , Peptídeos beta-Amiloides/química , Dicroísmo Circular , Géis/química , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Domínios Proteicos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Difração de Raios X
16.
Langmuir ; 36(4): 1003-1013, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31865708

RESUMO

Collagen, the most abundant component of natural ECM, has attracted interest of scientific communities to replicate its multihierarchical self-assembling structure. Recent developments in collagen mimetic peptides were inclined toward the production of self-assembling short peptides capable of mimicking complex higher order structures with tunable mechanical properties. Here, we report for the first time, the crucial molecular design of oppositely charged collagen mimetic shortest bioactive pentapeptide sequences, as a minimalistic building block for development of next-generation biomaterials. Our rational design involves synthesis of two pentapeptides, where the fundamental molecular motif of collagen, that is, Gly-X-Y has been mutated at the central position with positively charged, lysine, and negatively charged, aspartate, residues. Depending on their overall surface charge, these peptides showed high propensity to form self-supporting hydrogel either at acidic or basic pH, which limits their biomedical applications. Interestingly, simple mixing of the two peptides was found to induce the coassembly of these designed peptides, which drives the formation of self-supporting hydrogel at physiological pH and thus enhanced the potential of exploring these peptides for biomedical purposes. This coassembly of ionic peptides was accompanied by the enhancement in the mechanical stiffness of the gels and reduction in overall zeta potential of the combined hydrogel, which provides the evidence for additional electrostatic interactions. Furthermore, the thixotropic nature of these gels offers an additional advantage of exploration of designer biomaterials as injectable gels. The nanofibers of coassembled hydrogel were found to be highly biocompatible to the fibroblast cells compared to the individual peptides, which was evident from their cytotoxicity studies. We anticipate that our rational design of ECM protein mimics in the form of short bioactive peptides will contribute significantly to the development of novel biomaterials and play a crucial role in the field of tissue engineering and regenerative medicines.


Assuntos
Colágeno/química , Peptídeos/química , Hidrogel de Polietilenoglicol-Dimetacrilato , Concentração de Íons de Hidrogênio , Íons/química , Substâncias Macromoleculares/química , Espectrometria de Massas , Estrutura Molecular , Peptídeos/síntese química , Eletricidade Estática
17.
ACS Biomater Sci Eng ; 6(5): 2832-2846, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463249

RESUMO

Designing an extracellular matrix mimic by biofunctionalization of polymeric scaffolds is a popular strategy and extremely crucial for facilitating the interactions between cells and the matrix. To this direction, supramolecular gels are gaining exponential attention over the last few years, owing to their potential biocompatibility and biodegradability. In spite of diverse biological roles of native laminin, the bioactivities of self-assembling laminin-derived short peptides were less explored. In this work, we have explored the minimalist design to develop hydrogel scaffolds based on IKVAV and YIGSR peptides individually and their composite matrix, which can provide structurally and functionally relevant materials for tissue engineering. Till date, composite supramolecular gels solely made up of self-assembling IKVAV and YIGSR peptides have never been reported. Such composite gels can be a closer mimic of natural laminin protein, which could mimic the essential functions of the short peptide fragments present on different chains of the extracellular matrix protein, laminin. Interestingly, we used a unique strategy of simple mixing of the two laminin mimetic peptides, which tend to induce coassembly with a self-sorted nanofibrous network with relatively enhanced mechanical strength. The physicochemical properties of the biofunctional hydrogels were studied using different microscopic, spectroscopic, and rheology techniques. To assess the bioactivity of laminin-derived scaffolds in controlling neuronal cell growth, its biocompatibility, cellular growth, and proliferation were quantified using C6 glial cells and SHSY5Y neuroblastoma cells. The live/dead staining further confirmed the adhesion and proliferation of the cells. A significant increase in neurite length provides clear evidence on mimicking the neurite extension function of native laminin protein by its short derivatives. Interestingly, similar ß-III tubulin expression and cell cycle phases were observed, in comparison to control, which indicated normal cellular functioning of the cells cultured over short laminin hydrogel scaffolds. All bioassays suggested that Fmoc YIGSR promotes growth of neural cells to a greater extent and maintains healthier morphology, in comparison to hydrophobic Fmoc IKVAV, owing to the entangled longer fibrous network formed by YIGSR peptide. It is expected that thinner long fibers provide a more uniform surface and are more supportive for cell adhesion in comparison to hydrophobic, shorter fibers IKVAV peptide. However, in composite gels, the detrimental effect of hydrophobic IKVAV peptide could be reduced and better adhesion and proliferation could be achieved along with enhanced cell survival. These observations demonstrate the high potential of the laminin-derived hydrogels in tissue engineering and neuronal stem cell differentiation in future.


Assuntos
Hidrogéis , Laminina , Ciclo Celular , Proliferação de Células , Hidrogéis/farmacologia , Neurogênese
18.
Langmuir ; 29(46): 14321-7, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24144273

RESUMO

We demonstrate the preparation of peptide gel microparticles that are emulsified and stabilized by SiO2 nanoparticles. The gels are composed of aromatic peptide amphiphiles 9-fluorenylmethoxycarbonyldiphenylalanine (Fmoc-FF) coassembled with Fmoc-amino acids with different functional groups (S: serine; D: aspartic acid; K: lysine; and Y: tyrosine). The gel phase provides a highly hydrated matrix, and peptide self-assembly endows the matrix with tunable chemical environments which may be exploited to support and stabilize proteins. The use of Pickering emulsion to stabilize these gel particles is advantageous through avoidance of surfactants that may denature proteins. The performance of enzyme lipase B immobilized in pickering/gel microparticles with different chemical functionalities is investigated by studying transesterification in heptane. We show that the use of Pickering particles enhances the performance of the enzyme, which is further improved in gel-phase systems, with hydrophilic environment provided by Fmoc-FF/S giving rise to the best catalytic performance. The combination of a tunable chemical environment in gel phase and Pickering stabilization described here is expected to prove useful for areas where proteins are to be exploited in technological contexts such as biocatalysis and also in other areas where protein performance and activity are important, such as biosensors and bioinspired solar fuel devices.


Assuntos
Biocatálise , Peptídeos/química , Caprilatos/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Esterificação , Fluorenos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Géis , Heptanos/química , Lipase/química , Lipase/metabolismo , Modelos Moleculares , Nanopartículas/química , Octanóis/química , Conformação Proteica , Dióxido de Silício/química
19.
J Am Chem Soc ; 135(45): 16789-92, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24147566

RESUMO

We demonstrate the formation of supramolecular peptide nanofibers that display dynamic instability; i.e., they are formed by competing assembly and disassembly reactions, where assembly is favored away from equilibrium. The systems are based on competitive catalytic transacylation and hydrolysis, producing a self-assembling aromatic peptide amphiphile from amino acid precursors that temporarily exceeds the critical gelation concentration, until the competing hydrolytic reaction takes over. Analysis by atomic force microscopy shows consecutive nanofiber formation and shortening. The process results in macroscopically observable temporary hydrogelation, which may be repeated upon refueling the system with further addition of the chemically activated amino acid precursor. Nonequilibrium nanostructures open up opportunities for mimicry of the behavior of dynamic gels found in natural systems and provide components for future adaptive nanotechnologies.


Assuntos
Géis/química , Nanofibras/química , Nanofibras/ultraestrutura , Peptídeos/química , Acilação , Aminoácidos/química , Biocatálise , Hidrólise , Nanotecnologia/métodos
20.
Langmuir ; 28(48): 16664-70, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23116236

RESUMO

Biocatalytic action and specific ion effects are both known to have dramatic effects on molecular self-assembly and hydrogelation. In this paper, we demonstrate that these effects are highly cooperative. Biocatalytic hydrogelation of Fmoc peptides in the presence of salts combines kinetic (through enzymatic catalysis) and thermodynamic (specific ion and protein templating) contributions when applied in combination. Spectroscopic data (obtained by fluorescence spectroscopy and circular dichroism) revealed that hydrophobic interactions are greatly affected, giving rise to differential chiral organization and supramolecular structure formation. The kinetic effects of catalytic action could be removed from the system by applying a heat/cool cycle, giving insight into the thermodynamic influence of both protein and salt on these systems and showing that the effects of catalysis, templating, and salts are cooperative. The variable molecular interactions are expressed as variable material properties, such as thermal stability and mechanical strength of the final gel-phase material. To gain more insight into the role of the enzyme, beyond catalysis, in the underlying mechanism, static light scattering is performed, which indicates the different mode of aggregation of the enzyme molecules in the presence of different salts in aqueous solution that may play a role to direct the assembly via templating. Overall, the results show that the combination of specific salts and enzymatic hydrogelation can give rise to complex self-assembly behaviors that may be exploited to tune hydrogel properties.


Assuntos
Biocatálise , Hidrogéis/química , Sais/química , Esterases/metabolismo , Fluorenos/química , Cinética , Fenômenos Mecânicos , Peptídeos/química , Subtilisina/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA