RESUMO
Current treatments for osteosarcoma, combining conventional polychemotherapy and surgery, make it possible to attain a five-year survival rate of 70% in affected individuals. The presence of chemoresistance and metastases significantly shorten the patient's lifespan, making identification of new therapeutic tools essential. Inhibiting bone resorption has been shown to be an efficient adjuvant strategy impacting the metastatic dissemination of osteosarcoma, tumor growth, and associated bone destruction. Unfortunately, over-apposition of mineralized matrix by normal and tumoral osteoblasts was associated with this inhibition. Endothelin signaling is implicated in the functional differentiation of osteoblasts, raising the question of the potential value of inhibiting it alone, or in combination with bone resorption repression. Using mouse models of osteosarcoma, the impact of macitentan, an endothelin receptor inhibitor, was evaluated regarding tumor growth, metastatic dissemination, matrix over-apposition secondary to RANKL blockade, and safety when combined with chemotherapy. The results showed that macitentan has no impact on tumor growth or sensitivity to ifosfamide, but significantly reduces tumoral osteoid tissue formation and the metastatic capacity of the osteosarcoma. To conclude, macitentan appears to be a promising therapeutic adjuvant for osteosarcoma alone or associated with bone resorption inhibitors.
RESUMO
Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation specifically for Ewing sarcoma, associated with tumor resection. However, patient survival has not evolved for the past decade and remains closely related to the response of tumor cells to chemotherapy, reaching around 75% at 5 years for patients with localized forms of osteosarcoma or Ewing sarcoma but less than 30% in metastatic diseases and patients resistant to initial chemotherapy. Despite Ewing sarcoma being characterized by specific EWSR1-ETS gene fusions resulting in oncogenic transcription factors, currently, no targeted therapy could be implemented. It seems even more difficult to develop a targeted therapeutic strategy in osteosarcoma which is characterized by high complexity and heterogeneity in genomic alterations. Nevertheless, the common point between these different bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Therefore, targeting different actors of the bone tumor microenvironment has been hypothesized to develop new therapeutic strategies. In this context, it is well known that the Wnt/ß-catenin signaling pathway plays a key role in cancer development, including osteosarcoma and Ewing sarcoma as well as in bone remodeling. Moreover, recent studies highlight the implication of the Wnt/ß-catenin pathway in angiogenesis and immuno-surveillance, two key mechanisms involved in metastatic dissemination. This review focuses on the role played by this signaling pathway in the development of primary bone tumors and the modulation of their specific microenvironment.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/tratamento farmacológico , Sarcoma de Ewing/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Adolescente , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/mortalidade , Osso e Ossos , Criança , Humanos , Metástase Linfática , Terapia de Alvo Molecular/métodos , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/mortalidade , Neovascularização Patológica/prevenção & controle , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/imunologia , Osteossarcoma/genética , Osteossarcoma/imunologia , Osteossarcoma/mortalidade , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/imunologia , Proteína EWS de Ligação a RNA/antagonistas & inibidores , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/imunologia , Sarcoma de Ewing/genética , Sarcoma de Ewing/imunologia , Sarcoma de Ewing/mortalidade , Análise de Sobrevida , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Via de Sinalização Wnt/efeitos dos fármacos , Adulto Jovem , beta Catenina/antagonistas & inibidores , beta Catenina/genética , beta Catenina/imunologiaRESUMO
PURPOSE: Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants the development of new strategies to improve overall patient survival. Among them, HSP90 is a molecular chaperone involved in the maturation and stability of various oncogenic proteins leading to tumor cells survival and disease progression. We assessed the antitumor properties of a synthetic HSP90 inhibitor, PF4942847, alone or in combination with zoledronic acid in osteosarcoma. EXPERIMENTAL DESIGN: The effects of PF4942847 were evaluated on human osteosarcoma cells growth and apoptosis. Signaling pathways were analyzed by Western blotting. The consequence of HSP90 therapy combined or not with zoledronic acid was evaluated in mice bearing HOS-MNNG xenografts on tumor growth, associated bone lesions, and pulmonary metastasis. The effect of PF4942847 on osteoclastogenesis was assessed on human CD14(+) monocytes. RESULTS: In osteosarcoma cell lines, PF4942847 inhibited cell growth in a dose-dependent manner (IC50 ±50 nmol/L) and induced apoptosis with an increase of sub-G1 fraction and cleaved PARP. These biologic events were accompanied by decreased expression of Akt, p-ERK, c-Met, and c-RAF1. When administered orally to mice bearing osteosarcoma tumors, PF4942847 significantly inhibited tumor growth by 80%, prolonged survival compared with controls, and inhibited pulmonary metastases by blocking c-Met, FAK, and MMP9 signaling. In contrast to 17-allylamino-17-demethoxygeldanamycin (17-AAG), PF4942847 did not induce osteoclast differentiation, and synergistically acted with zoledronic acid to delay osteosarcoma progression and prevent bone lesions. CONCLUSIONS: All these data provide a strong rationale for clinical evaluation of PF4942847 alone or in combination with zoledronic acid in osteosarcoma. Clin Cancer Res; 22(10); 2520-33. ©2015 AACR.