Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Clin Transl Med ; 14(6): e1723, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877653

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct with a poor prognosis owing to limited therapeutic options. The incidence of intrahepatic CCA (iCCA) is increasing worldwide, and its molecular basis is emerging. Environmental factors may contribute to regional differences in the mutation spectrum of European patients with iCCA, which are underrepresented in systematic genomic and transcriptomic studies of the disease. METHODS: We describe an integrated whole-exome sequencing and transcriptomic study of 37 iCCAs patients in Germany. RESULTS: We observed as most frequently mutated genes ARID1A (14%), IDH1, BAP1, TP53, KRAS, and ATM in 8% of patients. We identified FGFR2::BICC1 fusions in two tumours, and FGFR2::KCTD1 and TMEM106B::ROS1 as novel fusions with potential therapeutic implications in iCCA and confirmed oncogenic properties of TMEM106B::ROS1 in vitro. Using a data integration framework, we identified PBX1 as a novel central regulatory gene in iCCA. We performed extended screening by targeted sequencing of an additional 40 CCAs. In the joint analysis, IDH1 (13%), BAP1 (10%), TP53 (9%), KRAS (7%), ARID1A (7%), NF1 (5%), and ATM (5%) were the most frequently mutated genes, and we found PBX1 to show copy gain in 20% of the tumours. According to other studies, amplifications of PBX1 tend to occur in European iCCAs in contrast to liver fluke-associated Asian iCCAs. CONCLUSIONS: By analyzing an additional European cohort of iCCA patients, we found that PBX1 protein expression was a marker of poor prognosis. Overall, our findings provide insight into key molecular alterations in iCCA, reveal new targetable fusion genes, and suggest that PBX1 is a novel modulator of this disease.


Assuntos
Colangiocarcinoma , Fator de Transcrição 1 de Leucemia de Células Pré-B , Proteínas Proto-Oncogênicas , Humanos , Colangiocarcinoma/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Masculino , Proteínas Proto-Oncogênicas/genética , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Neoplasias dos Ductos Biliares/genética , Alemanha/epidemiologia , Biomarcadores Tumorais/genética , Adulto , Genômica/métodos , Proteínas Tirosina Quinases
4.
Genome Biol ; 22(1): 167, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074348

RESUMO

BACKGROUND: CIMP (CpG island methylator phenotype) is an epigenetic molecular subtype, observed in multiple malignancies and associated with the epigenetic silencing of tumor suppressors. Currently, for most cancers including gastric cancer (GC), mechanisms underlying CIMP remain poorly understood. We sought to discover molecular contributors to CIMP in GC, by performing global DNA methylation, gene expression, and proteomics profiling across 14 gastric cell lines, followed by similar integrative analysis in 50 GC cell lines and 467 primary GCs. RESULTS: We identify the cystathionine beta-synthase enzyme (CBS) as a highly recurrent target of epigenetic silencing in CIMP GC. Likewise, we show that CBS epimutations are significantly associated with CIMP in various other cancers, occurring even in premalignant gastroesophageal conditions and longitudinally linked to clinical persistence. Of note, CRISPR deletion of CBS in normal gastric epithelial cells induces widespread DNA methylation changes that overlap with primary GC CIMP patterns. Reflecting its metabolic role as a gatekeeper interlinking the methionine and homocysteine cycles, CBS loss in vitro also causes reductions in the anti-inflammatory gasotransmitter hydrogen sulfide (H2S), with concomitant increase in NF-κB activity. In a murine genetic model of CBS deficiency, preliminary data indicate upregulated immune-mediated transcriptional signatures in the stomach. CONCLUSIONS: Our results implicate CBS as a bi-faceted modifier of aberrant DNA methylation and inflammation in GC and highlights H2S donors as a potential new therapy for CBS-silenced lesions.


Assuntos
Ilhas de CpG/genética , Cistationina beta-Sintase/genética , Metilação de DNA/genética , Inflamação/genética , Mutação/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Deleção de Genes , Humanos , Intestinos/patologia , Metaplasia , Camundongos Transgênicos , Fenótipo , Proteoma/metabolismo , Transcriptoma/genética
5.
Genome Med ; 13(1): 3, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413596

RESUMO

BACKGROUND: Family history has traditionally been an essential part of clinical care to assess health risks. However, declining sequencing costs have precipitated a shift towards genomics-first approaches in population screening programs rendering the value of family history unknown. We evaluated the utility of incorporating family history information for genomic sequencing selection. METHODS: To ascertain the relationship between family histories on such population-level initiatives, we analysed whole genome sequences of 1750 research participants with no known pre-existing conditions, of which half received comprehensive family history assessment of up to four generations, focusing on 95 cancer genes. RESULTS: Amongst the 1750 participants, 866 (49.5%) had high-quality standardised family history available. Within this group, 73 (8.4%) participants had an increased family history risk of cancer (increased FH risk cohort) and 1 in 7 participants (n = 10/73) carried a clinically actionable variant inferring a sixfold increase compared with 1 in 47 participants (n = 17/793) assessed at average family history cancer risk (average FH risk cohort) (p = 0.00001) and a sevenfold increase compared to 1 in 52 participants (n = 17/884) where family history was not available (FH not available cohort) (p = 0.00001). The enrichment was further pronounced (up to 18-fold) when assessing only the 25 cancer genes in the American College of Medical Genetics (ACMG) Secondary Findings (SF) genes. Furthermore, 63 (7.3%) participants had an increased family history cancer risk in the absence of an apparent clinically actionable variant. CONCLUSIONS: These findings demonstrate that the collection and analysis of comprehensive family history and genomic data are complementary and in combination can prioritise individuals for genomic analysis. Thus, family history remains a critical component of health risk assessment, providing important actionable data when implementing genomics screening programs. TRIAL REGISTRATION: ClinicalTrials.gov NCT02791152 . Retrospectively registered on May 31, 2016.


Assuntos
Atenção à Saúde , Genômica , Anamnese , Medicina de Precisão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
6.
Nat Commun ; 11(1): 739, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029730

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease with features that vary by ethnicity. A systematic characterization of the genomic landscape of Chinese ccRCC is lacking, and features of ccRCC associated with tumor thrombus (ccRCC-TT) remain poorly understood. Here, we applied whole-exome sequencing on 110 normal-tumor pairs and 42 normal-tumor-thrombus triples, and transcriptome sequencing on 61 tumor-normal pairs and 30 primary-thrombus pairs from 152 Chinese patients with ccRCC. Our analysis reveals that a mutational signature associated with aristolochic acid (AA) exposure is widespread in Chinese ccRCC. Tumors from patients with ccRCC-TT show a higher mutational burden and genomic instability; in addition, mutations in BAP1 and SETD2 are highly enriched in patients with ccRCC-TT. Moreover, patients with/without TT show distinct molecular characteristics. We reported the integrative genomic sequencing of Chinese ccRCC and identified the features associated with tumor thrombus, which may facilitate ccRCC diagnosis, prognosis and treatment.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Trombose/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácidos Aristolóquicos/toxicidade , Povo Asiático/genética , Carcinoma de Células Renais/complicações , Carcinoma de Células Renais/etiologia , China , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Instabilidade Genômica , Humanos , Neoplasias Renais/complicações , Neoplasias Renais/etiologia , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Trombose/complicações , Trombose/etiologia , Sequenciamento do Exoma
7.
Cancer Cell ; 35(6): 932-947.e8, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31130341

RESUMO

We performed genomic and transcriptomic sequencing of 133 combined hepatocellular and intrahepatic cholangiocarcinoma (cHCC-ICC) cases, including separate, combined, and mixed subtypes. Integrative comparison of cHCC-ICC with hepatocellular carcinoma and intrahepatic cholangiocarcinoma revealed that combined and mixed type cHCC-ICCs are distinct subtypes with different clinical and molecular features. Integrating laser microdissection, cancer cell fraction analysis, and single nucleus sequencing, we revealed both mono- and multiclonal origins in the separate type cHCC-ICCs, whereas combined and mixed type cHCC-ICCs were all monoclonal origin. Notably, cHCC-ICCs showed significantly higher expression of Nestin, suggesting Nestin may serve as a biomarker for diagnosing cHCC-ICC. Our results provide important biological and clinical insights into cHCC-ICC.


Assuntos
Neoplasias dos Ductos Biliares/genética , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Complexas Mistas/genética , Nestina/genética , Transcriptoma , Ásia , Neoplasias dos Ductos Biliares/química , Neoplasias dos Ductos Biliares/classificação , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/classificação , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/química , Colangiocarcinoma/classificação , Colangiocarcinoma/patologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/química , Neoplasias Hepáticas/classificação , Neoplasias Hepáticas/patologia , Masculino , Neoplasias Complexas Mistas/química , Neoplasias Complexas Mistas/classificação , Neoplasias Complexas Mistas/patologia , Nestina/análise , Valor Preditivo dos Testes , Prognóstico , Regulação para Cima
8.
Stem Cell Res Ther ; 9(1): 68, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559008

RESUMO

BACKGROUND: While a shift towards non-viral and animal component-free methods of generating induced pluripotent stem (iPS) cells is preferred for safer clinical applications, there is still a shortage of reliable cell sources and protocols for efficient reprogramming. METHODS: Here, we show a robust episomal and xeno-free reprogramming strategy for human iPS generation from dental pulp stem cells (DPSCs) which renders good efficiency (0.19%) over a short time frame (13-18 days). RESULTS: The robustness of DPSCs as starting cells for iPS induction is found due to their exceptional inherent stemness properties, developmental origin from neural crest cells, specification for tissue commitment, and differentiation capability. To investigate the epigenetic basis for the high reprogramming efficiency of DPSCs, we performed genome-wide DNA methylation analysis and found that the epigenetic signature of DPSCs associated with pluripotent, developmental, and ecto-mesenchymal genes is relatively close to that of iPS and embryonic stem (ES) cells. Among these genes, it is found that overexpression of PAX9 and knockdown of HERV-FRD improved the efficiencies of iPS generation. CONCLUSION: In conclusion, our study provides underlying epigenetic mechanisms that establish a robust platform for efficient generation of iPS cells from DPSCs, facilitating industrial and clinical use of iPS technology for therapeutic needs.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Polpa Dentária/citologia , Epigênese Genética , Células-Tronco Mesenquimais/citologia , Plasmídeos/genética , Animais , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Cultura Primária de Células/métodos
9.
Nat Commun ; 9(1): 100, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311615

RESUMO

The repression of telomerase activity during cellular differentiation promotes replicative aging and functions as a physiological barrier for tumorigenesis in long-lived mammals, including humans. However, the underlying mechanisms remain largely unclear. Here we describe how miR-615-3p represses hTERT expression. mir-615-3p is located in an intron of the HOXC5 gene, a member of the highly conserved homeobox family of transcription factors controlling embryogenesis and development. Unexpectedly, we found that HoxC5 also represses hTERT expression by disrupting the long-range interaction between hTERT promoter and its distal enhancer. The 3'UTR of hTERT and its upstream enhancer region are well conserved in long-lived primates. Both mir-615-3p and HOXC5 are activated upon differentiation, which constitute a feed-forward loop that coordinates transcriptional and post-transcriptional repression of hTERT during cellular differentiation. Deregulation of HOXC5 and mir-615-3p expression may contribute to the activation of hTERT in human cancers.


Assuntos
Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Telomerase/biossíntese , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Neoplasias/genética , Neoplasias/patologia , Regiões Promotoras Genéticas/genética
10.
Sci Rep ; 7: 40737, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102343

RESUMO

Circulating tumour DNA (ctDNA) has the potential to be a specific biomarker for the monitoring of tumours in patients with colorectal cancer (CRC). Here, our aim was to develop a personalised surveillance strategy to monitor the clinical course of CRC after surgery. We developed patient-specific ctDNA assays based on multiplexed detection of somatic mutations identified from patient primary tumours, and applied them to detect ctDNA in 44 CRC patients, analysing a total of 260 plasma samples. We found that ctDNA detection correlated with clinical events - it is detectable in pre-operative but not post-operative plasma, and also in patients with recurrent CRC. We also detected ctDNA in 11 out of 15 cases at or before clinical or radiological recurrence of CRC, indicating the potential of our assay for early detection of metastasis. We further present data from a patient with multiple primary cancers to demonstrate the specificity of our assays to distinguish between CRC recurrence and a second primary cancer. Our approach can complement current methods for surveillance of CRC by adding an individualised biological component, allowing us not only to point to the presence of residual or recurrent disease, but also attribute it to the original cancer.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Neoplasias Colorretais/genética , DNA de Neoplasias , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/cirurgia , Humanos , Reação em Cadeia da Polimerase Multiplex , Mutação , Período Pós-Operatório , Recidiva , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento , Fluxo de Trabalho
11.
ESMO Open ; 1(1): e000009, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27843583

RESUMO

BACKGROUND: Gene expression profiling has contributed greatly to cancer research. However, expression-driven biomarker discovery in metastatic gastric cancer (mGC) remains unclear. A gene expression profile predicting RAD001 response in refractory GC was explored in this study. METHODS: Total RNA isolated from 54 tumour specimens from patients with mGC, prior to RAD001 treatment, was analysed via the NanoString nCounter gene expression assay. This assay targeted 477 genes representing 10 different GC-related oncogenic signalling and molecular subtype-specific expression signatures. Gene expression profiles were correlated with patient clinicopathological variables. RESULTS: NanoString data confirmed similar gene expression profiles previously identified by microarray analysis. Signature I with 3 GC subtypes (mesenchymal, metabolic and proliferative) showed approximately 90% concordance where the mesenchymal and proliferative subtypes were significantly associated with signet ring cell carcinoma and the WHO classified tubular adenocarcinoma GC, respectively (p=0.042). Single-gene-level correlations with patient clinicopathological variables showed strong associations between FHL1 expression (mesenchymal subtype) and signet ring cell carcinoma, and NEK2, OIP5, PRC1, TPX2 expression (proliferative subtype) with tubular adenocarcinoma (adjusted p<0.05). Increased BRCA2 (p=0.040) and MMP9 (p=0.045) expression was significantly associated with RAD001 good response and longer progression-free survival outcome (BRCA2, p=0.012, HR 0.370 95% CI (0.171 to 0.800); MMP9, p=0.010, HR 0.359 95% CI (0.166 to 0.779)). In contrast, increased BTC (p=0.035) expression was significantly associated with RAD001 poor response and poor progression-free survival (p=0.031, HR 2.336 95% CI (1.079 to 5.059) by univariate Cox regression analysis. CONCLUSIONS: Microarray results are highly reproducible with NanoString nCounter gene expression profiling. Additionally, BRCA2 and MMP9 expression are potential predictive biomarkers for good response in RAD001-treated mGC.

12.
DNA Repair (Amst) ; 46: 9-19, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27650847

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen which infects cystic fibrosis and cancer patients with compromised immune systems. LasR is a master regulator which controls the virulence of P. aeruginosa in response to bacterial cell-density and host signals. During infection, lasR is frequently mutated, conferring P. aeruginosa a growth advantage in hosts and enhances resistance to widely used antibiotics. However, the mechanistic basis of lasR mutation is not well understood. We have tested here the hypothesis that transcription strength is a contributory determinant of lasR mutagenesis. P. aeruginosa strains with different lasR transcription strengths were therefore engineered and the lasR mutations were monitored unbiasedly using next-generation sequencing technology. Our results suggest that the strength of transcription could be one of the deterministic factors that drive the mutagenesis of lasR in P. aeruginosa, shedding new insights into bacterial infection and antibiotic resistance.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mutação , Pseudomonas aeruginosa/genética , Transativadores/genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Sequência de Bases , Contagem de Colônia Microbiana , Farmacorresistência Bacteriana , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Plasmídeos/química , Plasmídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/metabolismo
13.
Nat Commun ; 7: 12983, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677335

RESUMO

Regulatory enhancer elements in solid tumours remain poorly characterized. Here we apply micro-scale chromatin profiling to survey the distal enhancer landscape of primary gastric adenocarcinoma (GC), a leading cause of global cancer mortality. Integrating 110 epigenomic profiles from primary GCs, normal gastric tissues and cell lines, we highlight 36,973 predicted enhancers and 3,759 predicted super-enhancers respectively. Cell-line-defined super-enhancers can be subclassified by their somatic alteration status into somatic gain, loss and unaltered categories, each displaying distinct epigenetic, transcriptional and pathway enrichments. Somatic gain super-enhancers are associated with complex chromatin interaction profiles, expression patterns correlated with patient outcome and dense co-occupancy of the transcription factors CDX2 and HNF4α. Somatic super-enhancers are also enriched in genetic risk SNPs associated with cancer predisposition. Our results reveal a genome-wide reprogramming of the GC enhancer and super-enhancer landscape during tumorigenesis, contributing to dysregulated local and regional cancer gene expression.

14.
Gastroenterology ; 151(4): 637-650.e10, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27373511

RESUMO

BACKGROUD & AIMS: Gastric cancer (GC) is the third leading cause of global cancer mortality. Adenosine-to-inosine RNA editing is a recently described novel epigenetic mechanism involving sequence alterations at the RNA but not DNA level, primarily mediated by ADAR (adenosine deaminase that act on RNA) enzymes. Emerging evidence suggests a role for RNA editing and ADARs in cancer, however, the relationship between RNA editing and GC development and progression remains unknown. METHODS: In this study, we leveraged on the next-generation sequencing transcriptomics to demarcate the GC RNA editing landscape and the role of ADARs in this deadly malignancy. RESULTS: Relative to normal gastric tissues, almost all GCs displayed a clear RNA misediting phenotype with ADAR1/2 dysregulation arising from the genomic gain and loss of the ADAR1 and ADAR2 gene in primary GCs, respectively. Clinically, patients with GCs exhibiting ADAR1/2 imbalance demonstrated extremely poor prognoses in multiple independent cohorts. Functionally, we demonstrate in vitro and in vivo that ADAR-mediated RNA misediting is closely associated with GC pathogenesis, with ADAR1 and ADAR2 playing reciprocal oncogenic and tumor suppressive roles through their catalytic deaminase domains, respectively. Using an exemplary target gene PODXL (podocalyxin-like), we demonstrate that the ADAR2-regulated recoding editing at codon 241 (His to Arg) confers a loss-of-function phenotype that neutralizes the tumorigenic ability of the unedited PODXL. CONCLUSIONS: Our study highlights a major role for RNA editing in GC disease and progression, an observation potentially missed by previous next-generation sequencing analyses of GC focused on DNA alterations alone. Our findings also suggest new GC therapeutic opportunities through ADAR1 enzymatic inhibition or the potential restoration of ADAR2 activity.


Assuntos
Adenosina Desaminase/genética , Edição de RNA , Proteínas de Ligação a RNA/genética , Neoplasias Gástricas/genética , Códon , Progressão da Doença , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sequência de RNA , Sialoglicoproteínas/genética , Neoplasias Gástricas/patologia , Transcriptoma
15.
Stem Cells ; 34(10): 2471-2484, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27299710

RESUMO

In most human somatic cells, the lack of telomerase activity results in progressive telomere shortening during each cell division. Eventually, DNA damage responses triggered by critically short telomeres induce an irreversible cell cycle arrest termed replicative senescence. However, the cellular responses of human pluripotent stem cells to telomere uncapping remain unknown. We generated telomerase knockout human embryonic stem (ES) cells through gene targeting. Telomerase inactivation in ES cells results in progressive telomere shortening. Telomere DNA damage in ES cells and neural progenitor cells induces rapid apoptosis when telomeres are uncapped, in contrast to fibroblast cells that enter a state of replicative senescence. Significantly, telomerase inactivation limits the proliferation capacity of human ES cells without affecting their pluripotency. By targeting telomerase activity, we can functionally separate the two unique properties of human pluripotent stem cells, namely unlimited self-renewal and pluripotency. We show that the potential of ES cells to form teratomas in vivo is dictated by their telomere length. By controlling telomere length of ES cells through telomerase inactivation, we can inhibit teratoma formation and potentially improve the safety of cell therapies involving terminally differentiated cells as well as specific progenitor cells that do not require sustained cellular proliferation in vivo, and thus sustained telomerase activity. Stem Cells 2016;34:2471-2484.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Telômero/metabolismo , Animais , Biomarcadores/metabolismo , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Etoposídeo/farmacologia , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Engenharia Genética , Genoma Humano , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/transplante , Humanos , Camundongos SCID , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transplante de Células-Tronco , Telomerase/metabolismo , Encurtamento do Telômero/efeitos dos fármacos , Teratoma/genética , Teratoma/patologia
16.
Mol Oncol ; 10(8): 1183-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27302019

RESUMO

BACKGROUND: The tumour suppressor p53 is a central player in transcription regulation and cell fate determination. By interacting with p53 and altering its sequence-specific binding to the response elements, the hepatitis B virus X protein (HBx) was reported to re-direct p53 regulation of some genes. RESULTS: Coupling massively parallel deep sequencing with p53 chromatin immunoprecipitation, we demonstrate that HBx modulates global p53 site selection and that this was strongly influenced by altered interaction with transcription co-factors/co-regulators as well as post-translational modifications. Specifically, HBx attenuated p53-TBP-RB1 transcription complex recruitment and interaction and this was associated with hyper-phosphorylation of p53 at serine 315 by HBx. Concurrently, HBx enhanced p53 DNA occupancy to other response elements either alone by displacing specific transcription factors such as CEBPB and NFkB1, or in complex with distinct interacting co-factors Sp1, JUN and E2F1. Importantly, re-wiring of p53 transcription regulation by HBx was linked to the deregulation of genes involved in cell proliferation and death, suggesting a role of HBx in errant cell fate determination mediated by altered p53 site selection of target genes. CONCLUSIONS: Our study thus presents first evidence of global modes of p53 transcription alteration by HBx and provides new insights to understand and potentially curtail the viral oncoprotein.


Assuntos
Regulação Neoplásica da Expressão Gênica , Transativadores/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Morte Celular , Proliferação de Células/genética , Sequência Conservada/genética , DNA/metabolismo , Células Hep G2 , Humanos , Modelos Biológicos , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica/genética , Elementos de Resposta/genética , Fatores de Transcrição , Proteína Supressora de Tumor p53/metabolismo , Proteínas Virais Reguladoras e Acessórias
17.
Oncotarget ; 7(11): 12386-92, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26848981

RESUMO

Activation of Wnt signaling due to Wnt overexpression or mutations of Wnt pathway components is associated with various cancers. Blocking Wnt secretion by inhibiting PORCN enzymatic activity has shown efficacy in a subset of cancers with elevated Wnt signaling. Predicting response to upstream Wnt inhibitors and monitoring response to therapeutics is challenging due to the paucity of well-defined biomarkers. In this study we identify Notum as a potential biomarker for Wnt driven cancers and show that coordinate regulation of NOTUM and AXIN2 expression may be a useful predictor of response to PORCN inhibitors. Most importantly, as NOTUM is a secreted protein and its levels in blood correlate with tumor growth, it has potential as a pharmacodynamic biomarker for PORCN and other Wnt pathway inhibitors.


Assuntos
Biomarcadores Tumorais/biossíntese , Esterases/biossíntese , Fibrossarcoma/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Animais , Proteína Axina/biossíntese , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Fibrossarcoma/metabolismo , Xenoenxertos , Humanos , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Transfecção
18.
Gut ; 65(12): 1960-1972, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26338826

RESUMO

BACKGROUND: GI stromal tumours (GISTs) are clinically heterogenous exhibiting varying degrees of disease aggressiveness in individual patients. OBJECTIVES: We sought to identify genetic alterations associated with high-risk GIST, explore their molecular consequences, and test their utility as prognostic markers. DESIGNS: Exome sequencing of 18 GISTs was performed (9 patients with high-risk/metastatic and 5 patients with low/intermediate-risk), corresponding to 11 primary and 7 metastatic tumours. Candidate alterations were validated by prevalence screening in an independent patient cohort (n=120). Functional consequences of SETD2 mutations were investigated in primary tissues and cell lines. Transcriptomic profiles for 8 GISTs (4 SETD2 mutated, 4 SETD2 wild type) and DNA methylation profiles for 22 GISTs (10 SETD2 mutated, 12 SETD2 wild type) were analysed. Statistical associations between molecular, clinicopathological factors, and relapse-free survival were determined. RESULTS: High-risk GISTs harboured increased numbers of somatic mutations compared with low-risk GISTs (25.2 mutations/high-risk cases vs 6.8 mutations/low-risk cases; two sample t test p=3.1×10-5). Somatic alterations in the SETD2 histone modifier gene occurred in 3 out of 9 high-risk/metastatic cases but no low/intermediate-risk cases. Prevalence screening identified additional SETD2 mutations in 7 out of 80 high-risk/metastatic cases but no low/intermediate-risk cases (n=29). Combined, the frequency of SETD2 mutations was 11.2% (10/89) and 0% (0/34) in high-risk and low-risk GISTs respectively. SETD2 mutant GISTs exhibited decreased H3K36me3 expression while SETD2 silencing promoted DNA damage in GIST-T1 cells. In gastric GISTs, SETD2 mutations were associated with overexpression of HOXC cluster genes and a DNA methylation signature of hypomethylated heterochromatin. Gastric GISTs with SETD2 mutations, or GISTs with hypomethylated heterochromatin, showed significantly shorter relapse-free survival on univariate analysis (log rank p=4.1×10-5). CONCLUSIONS: Our data suggest that SETD2 is a novel GIST tumour suppressor gene associated with disease progression. Assessing SETD2 genetic status and SETD2-associated epigenomic phenotypes may guide risk stratification and provide insights into mechanisms of GIST clinical aggressiveness.


Assuntos
Biomarcadores Tumorais/genética , Tumores do Estroma Gastrointestinal/genética , Histona-Lisina N-Metiltransferase/genética , Mutação de Sentido Incorreto , Estudos de Casos e Controles , Códon sem Sentido/genética , Metilação de DNA/genética , Exoma/genética , Tumores do Estroma Gastrointestinal/epidemiologia , Tumores do Estroma Gastrointestinal/patologia , Histonas/genética , Humanos , Mutação de Sentido Incorreto/genética , Invasividade Neoplásica , Fenótipo , Prevalência , Prognóstico , Índice de Gravidade de Doença , Singapura/epidemiologia
19.
Genome Med ; 7: 98, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26395002

RESUMO

BACKGROUND: Carcinoma of the oral tongue (OTSCC) is the most common malignancy of the oral cavity, characterized by frequent recurrence and poor survival. The last three decades has witnessed a change in the OTSCC epidemiological profile, with increasing incidence in younger patients, females and never-smokers. Here, we sought to characterize the OTSCC genomic landscape and to determine factors that may delineate the genetic basis of this disease, inform prognosis and identify targets for therapeutic intervention. METHODS: Seventy-eight cases were subjected to whole-exome (n = 18) and targeted deep sequencing (n = 60). RESULTS: While the most common mutation was in TP53, the OTSCC genetic landscape differed from previously described cohorts of patients with head and neck tumors: OTSCCs demonstrated frequent mutations in DST and RNF213, while alterations in CDKN2A and NOTCH1 were significantly less frequent. Despite a lack of previously reported NOTCH1 mutations, integrated analysis showed enrichments of alterations affecting Notch signaling in OTSCC. Importantly, these Notch pathway alterations were prognostic on multivariate analyses. A high proportion of OTSCCs also presented with alterations in drug targetable and chromatin remodeling genes. Patients harboring mutations in actionable pathways were more likely to succumb from recurrent disease compared with those who did not, suggesting that the former should be considered for treatment with targeted compounds in future trials. CONCLUSIONS: Our study defines the Asian OTSCC mutational landscape, highlighting the key role of Notch signaling in oral tongue tumorigenesis. We also observed somatic mutations in multiple therapeutically relevant genes, which may represent candidate drug targets in this highly lethal tumor type.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias da Língua/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , Cromatina/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Receptores Notch/genética , Análise de Sequência de DNA , Singapura , Adulto Jovem
20.
Genome Biol ; 16: 32, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25808843

RESUMO

BACKGROUND: Colorectal cancer with metastases limited to the liver (liver-limited mCRC) is a distinct clinical subset characterized by possible cure with surgery. We performed high-depth sequencing of over 750 cancer-associated genes and copy number profiling in matched primary, metastasis and normal tissues to characterize genomic progression in 18 patients with liver-limited mCRC. RESULTS: High depth Illumina sequencing and use of three different variant callers enable comprehensive and accurate identification of somatic variants down to 2.5% variant allele frequency. We identify a median of 11 somatic single nucleotide variants (SNVs) per tumor. Across patients, a median of 79.3% of somatic SNVs present in the primary are present in the metastasis and 81.7% of all alterations present in the metastasis are present in the primary. Private alterations are found at lower allele frequencies; a different mutational signature characterized shared and private variants, suggesting distinct mutational processes. Using B-allele frequencies of heterozygous germline SNPs and copy number profiling, we find that broad regions of allelic imbalance and focal copy number changes, respectively, are generally shared between the primary tumor and metastasis. CONCLUSIONS: Our analyses point to high genomic concordance of primary tumor and metastasis, with a thick common trunk and smaller genomic branches in general support of the linear progression model in most patients with liver-limited mCRC. More extensive studies are warranted to further characterize genomic progression in this important clinical population.


Assuntos
Neoplasias Colorretais/genética , Progressão da Doença , Genes Neoplásicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Algoritmos , Alelos , Desequilíbrio Alélico/genética , Sequência de Bases , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Biologia Computacional , Frequência do Gene/genética , Genoma Humano , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Dados de Sequência Molecular , Mutação/genética , Neoplasias Primárias Múltiplas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA