Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Res ; 81(21): 5555-5571, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34429328

RESUMO

The recognition of the immune system as a key component of the tumor microenvironment (TME) led to promising therapeutics. Because such therapies benefit only subsets of patients, understanding the activities of immune cells in the TME is required. Eosinophils are an integral part of the TME especially in mucosal tumors. Nonetheless, their role in the TME and the environmental cues that direct their activities are largely unknown. We report that breast cancer lung metastases are characterized by resident and recruited eosinophils. Eosinophil recruitment to the metastatic sites in the lung was regulated by G protein-coupled receptor signaling but independent of CCR3. Functionally, eosinophils promoted lymphocyte-mediated antitumor immunity. Transcriptome and proteomic analyses identified the TME rather than intrinsic differences between eosinophil subsets as a key instructing factor directing antitumorigenic eosinophil activities. Specifically, TNFα/IFNγ-activated eosinophils facilitated CD4+ and CD8+ T-cell infiltration and promoted antitumor immunity. Collectively, we identify a mechanism by which the TME trains eosinophils to adopt antitumorigenic properties, which may lead to the development of eosinophil-targeted therapeutics. SIGNIFICANCE: These findings demonstrate antitumor activities of eosinophils in the metastatic tumor microenvironment, suggesting that harnessing eosinophil activity may be a viable clinical strategy in patients with cancer.


Assuntos
Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/imunologia , Eosinófilos/imunologia , Neoplasias Pulmonares/imunologia , Receptores CCR3/fisiologia , Microambiente Tumoral , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Sci Immunol ; 5(44)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060143

RESUMO

IL-13 and IL-4 are potent mediators of type 2-associated inflammation such as those found in atopic dermatitis (AD). IL-4 shares overlapping biological functions with IL-13, a finding that is mainly explained by their ability to signal via the type 2 IL-4 receptor (R), which is composed of IL-4Rα in association with IL-13Rα1. Nonetheless, the role of the type 2 IL-4R in AD remains to be clearly defined. Induction of two distinct models of experimental AD in Il13ra1 -/- mice, which lack the type 2 IL-4R, revealed that dermatitis, including ear and epidermal thickening, was dependent on type 2 IL-4R signaling. Expression of TNF-α was dependent on the type 2 IL-4R, whereas induction of IL-4, IgE, CCL24, and skin eosinophilia was dependent on the type 1 IL-4R. Neutralization of IL-4, IL-13, and TNF-α as well as studies in bone marrow-chimeric mice revealed that dermatitis, TNF-α, CXCL1, and CCL11 expression were exclusively mediated by IL-13 signaling via the type 2 IL-4R expressed by nonhematopoietic cells. Conversely, induction of IL-4, CCL24, and eosinophilia was dependent on IL-4 signaling via the type 1 IL-4R expressed by hematopoietic cells. Last, we pharmacologically targeted IL-13Rα1 and established a proof of concept for therapeutic targeting of this pathway in AD. Our data provide mechanistic insight into the differential roles of IL-4, IL-13, and their receptor components in allergic skin and highlight type 2 IL-4R as a potential therapeutic target in AD and other allergic diseases such as asthma and eosinophilic esophagitis.


Assuntos
Dermatite Atópica/imunologia , Interleucina-13/imunologia , Receptores Tipo II de Interleucina-4/imunologia , Transdução de Sinais/imunologia , Animais , Dermatite Atópica/induzido quimicamente , Dinitrofluorbenzeno , Feminino , Interleucina-13/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxazolona
3.
Cancer Immunol Res ; 7(3): 388-400, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30665890

RESUMO

Immunotherapies targeting T lymphocytes are revolutionizing cancer therapy but only benefit a subset of patients, especially in colorectal cancer. Thus, additional insight into the tumor microenvironment (TME) is required. Eosinophils are bone marrow-derived cells that have been largely studied in the context of allergic diseases and parasite infections. Although tumor-associated eosinophilia has been described in various solid tumors including colorectal cancer, knowledge is still missing regarding eosinophil activities and even the basic question of whether the TME promotes eosinophil recruitment without additional manipulation (e.g., immunotherapy) is unclear. Herein, we report that eosinophils are recruited into developing tumors during induction of inflammation-induced colorectal cancer and in mice with the Apcmin /+ genotype, which develop spontaneous intestinal adenomas. Using adoptive transfer and cytokine neutralization experiments, we demonstrate that the TME supported prolonged eosinophil survival independent of IL5, an eosinophil survival cytokine. Tumor-infiltrating eosinophils consisted of degranulating eosinophils and were essential for tumor rejection independently of CD8+ T cells. Transcriptome and proteomic analysis revealed an IFNγ-linked signature for intratumoral eosinophils that was different from that of macrophages. Our data establish antitumorigenic roles for eosinophils in colorectal cancer. These findings may facilitate the development of pharmacologic treatments that could unleash antitumor responses by eosinophils, especially in colorectal cancer patients displaying eosinophilia.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Eosinófilos/imunologia , Animais , Degranulação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Quimiocina CCL11/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citotoxicidade Imunológica , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Imunoterapia Adotiva , Interferon gama/metabolismo , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteômica , Transdução de Sinais , Microambiente Tumoral/imunologia
4.
Cell Death Dis ; 9(2): 150, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396434

RESUMO

Cancer cells are commonly more resistant to cell death activated by the membranolytic protein complex C5b-9. Several surface-expressed and intracellular proteins that protect cells from complement-dependent cytotoxicity (CDC) have been identified. In this study, we investigated the function of heat shock protein 90 (Hsp90), an essential and ubiquitously expressed chaperone, overexpressed in cancer cells, in C5b-9-induced cell death. As shown, inhibition of Hsp90 with geldanamycin or radicicol is enhancing sensitivity of K562 erythroleukemia cells to CDC. Similarly, Hsp90 inhibition confers in Ramos B cell lymphoma cells elevated sensitivity to treatment with rituximab and complement. C5b-9 deposition is elevated on geldanamycin-treated cells. Purified Hsp90 binds directly to C9 and inhibits zinc-induced C9 polymerization, indicating that Hsp90 may act directly on the C5b-9 complex. Mortalin, also known as stress protein 70 or GRP75, is a mitochondrial chaperone that confers resistance to CDC. The postulated cooperation between Hsp90 and mortalin in protection from CDC was tested. Geldanamycin failed to sensitize toward CDC cells with knocked down mortalin. Direct binding of Hsp90 to mortalin was shown by co-immunoprecipitation in cell extracts after triggering with complement as well as by using purified recombinant proteins. These results provide an insight into the protective mechanisms utilized by cancer cells to evade CDC. They suggest that Hsp90 protects cells from CDC by inhibiting, together with mortalin, C5b-9 assembly and/or stability at the plasma membrane.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Morte Celular , Linhagem Celular Tumoral , Complemento C9/metabolismo , Citoproteção , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Ligação Proteica
5.
Curr Protoc Immunol ; 119: 14.43.1-14.43.22, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091265

RESUMO

Eosinophils are bone marrow-derived cells that differentiate in the bone marrow and migrate into the peripheral blood primarily under the regulation of interleukin (IL)-5. Eosinophil levels in the blood are relatively low. However, under steady-state conditions and in settings of allergic inflammation, parasite infections, or even cancer, they migrate and mainly reside in mucosal tissues where they have key effector and immune-modulating functions. Functional studies using eosinophils are not simple, since these cells are terminally differentiated and rapidly die in vitro. Thus, establishing simple methods to characterize, obtain, and functionally assess eosinophil activities is important. In this unit, we describe methodology for identifying tissue eosinophils by flow cytometry. In addition, we provide detailed methods for isolating eosinophils and for differentiating them from bone marrow cells for further functional studies. © 2017 by John Wiley & Sons, Inc.


Assuntos
Tecido Adiposo/patologia , Células da Medula Óssea/patologia , Colo/patologia , Eosinófilos/patologia , Animais , Sinalização do Cálcio , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Eosinófilos/metabolismo , Citometria de Fluxo/métodos , Humanos , Separação Imunomagnética/métodos , Interleucina-5/genética , Camundongos , Camundongos Transgênicos
6.
Sci Rep ; 7(1): 5922, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725048

RESUMO

Eosinophils and their associated cytokines IL-4 and IL-5 are emerging as central orchestrators of the immune-metabolic axis. Herein, we demonstrate that cross-talk between the Ig-superfamily receptor CD300f and IL-5 is a key checkpoint that modifies the ability of eosinophils to regulate metabolic outcomes. Generation of Il5 Tg /Cd300f -/- mice revealed marked and distinct increases in eosinophil levels and their production of IL-4 in the white and brown adipose tissues. Consequently, Il5 Tg /Cd300f -/- mice had increased alternatively activated macrophage accumulation in the adipose tissue. Cd300f -/- mice displayed age-related accumulation of eosinophils and macrophages in the adipose tissue and decreased adipose tissue weight, which was associated with decreased diet-induced weight gain and insulin resistance. Notably, Il5 Tg /CD300f -/- were protected from diet-induced weight gain and glucose intolerance. These findings highlight the cross-talk between IL-5 receptor and CD300f as a novel pathway regulating adipose tissue eosinophils and offer new entry points for therapeutic intervention for obesity and its complications.


Assuntos
Tecido Adiposo/citologia , Eosinófilos/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Receptores Imunológicos/metabolismo , Animais , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Ligantes , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-5/metabolismo , Aumento de Peso
7.
Int J Cancer ; 133(2): 514-8, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23319326

RESUMO

Mortalin/GRP75 is a ubiquitous mitochondrial chaperone related to the cytosolic heat shock protein 70 (HSP70). It protects cells from senescence and apoptosis and is overexpressed in cancer cells. Cell resistance to complement-dependent cytotoxicity depends on mortalin and during complement attack mortalin is released from cells. Our goal was to determine whether cancer patients have circulating mortalin in blood. The significance of mortalin in blood to survival prospects of colorectal cancer patients was evaluated. Occurrence of extracellular soluble HSP70 (sHSP70) is documented. We developed a sensitive ELISA for mortalin. The association between mortalin level and survival was subjected to the Cox proportional hazards analysis (univariate and multivariate analyses). Mortalin concentration in serum of colorectal cancer patients was 10-214 ng/ml. Survival data of the patients were known from an earlier study of sHSP70 in these samples. Cox regression analysis indicated that high mortalin (>60 ng/ml) is a risk factor for shorter survival. Serum levels of sHSP70 and mortalin in patients were independent variables. Concurrence of high sHSP70 and mortalin was associated with rapid disease progression (HR = 4, 2.04-8.45, p < 0.001). Addition of high sHSP70 and mortalin to a baseline model of age, sex and TNM stage, significantly (p < 0.001) enhanced the risk score to 8 (3.26-20.46). This is the first demonstration of circulating mortalin in cancer patients. Analysis of mortalin in blood, and even more so of mortalin and sHSP70, adds a high prognostic value to the TNM stage and will identify colorectal cancer patients at high risk of poor survival.


Assuntos
Neoplasias Colorretais/sangue , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP70/sangue , Mitocôndrias/metabolismo , Estudos de Coortes , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citosol/metabolismo , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Análise Multivariada , Modelos de Riscos Proporcionais , Fatores de Risco
8.
Neoplasia ; 14(1): 1-19, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22355269

RESUMO

The chemokine CCL5 (RANTES) plays active promalignancy roles in breast malignancy. The secretion of CCL5 by breast tumor cells is an important step in its tumor-promoting activities; therefore, inhibition of CCL5 secretion may have antitumorigenic effects. We demonstrate that, in breast tumor cells, CCL5 secretion necessitated the trafficking of CCL5-containing vesicles on microtubules from the endoplasmic reticulum (ER) to the post-Golgi stage, and CCL5 release was regulated by the rigidity of the actin cytoskeleton. Focusing on the 40s loop of CCL5, we found that the (43)TRKN(46) sequence of CCL5 was indispensable for its inclusion in motile vesicles, and for its secretion. The TRKN-mutated chemokine reached the Golgi, but trafficked along the ER-to-post-Golgi route differently than the wild-type (WT) chemokine. Based on the studies showing that the 40s loop of CCL5 mediates its binding to glycosaminoglycans (GAG), we analyzed the roles of GAG in regulating CCL5 secretion. TRKN-mutated CCL5 had lower propensity for colocalization with GAG in the Golgi compared to the WT chemokine. Secretion of WT CCL5 was significantly reduced in CHO mutant cells deficient in GAG synthesis, and the WT chemokine acquired an ER-like distribution in these cells, similar to that of TRKN-mutated CCL5 in GAG-expressing cells. The release of WT CCL5 was also reduced after inhibition of GAG presence/synthesis by intracellular expression of heparanase, inhibition of GAG sulfation, and sulfate deprivation. The need for a (43)TRKN(46) motif and for a GAG-mediated process in CCL5 secretion may enable the future design of modalities that prevent CCL5 release by breast tumor cells.


Assuntos
Neoplasias da Mama/metabolismo , Quimiocina CCL5/química , Quimiocina CCL5/metabolismo , Glicosaminoglicanos/metabolismo , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Glicosaminoglicanos/química , Humanos , Espaço Intracelular/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA