Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(28): e2301437, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379009

RESUMO

Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non-specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual-stimulation activated turn-on T1 imaging-based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)-mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3 O4 NPs) and a paramagnetic enhancer (Gd-DOTA complexes) are connected via the N6-methyladenine (m6 A)-caged, Zn2+ -dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd-DOTA complex-labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity-associated protein (FTO) specifically demethylates the m6 A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd-DOTA complex-labeled oligonucleotides. The restored T1 signal from the liberated Gd-DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia-mediated precise apoptotic cancer therapy.


Assuntos
DNA Catalítico , Compostos Heterocíclicos , Nanopartículas , Neoplasias , Compostos Organometálicos , DNA Catalítico/química , Fototerapia , Nanopartículas/química , Oligonucleotídeos , Oligonucleotídeos Antissenso , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
2.
Genes Dis ; 10(1): 89-100, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37013057

RESUMO

Glioblastoma (GBM) is one of the most aggressive (grade IV) gliomas characterized by a high rate of recurrence, resistance to therapy and a grim survival prognosis. The long-awaited improvement in GBM patients' survival rates essentially depends on advances in the development of new therapeutic approaches. Recent preclinical studies show that nanoscale materials could greatly contribute to the improvement of diagnosis and management of brain cancers. In the current review, we will discuss how specific features of glioma pathobiology can be employed for designing efficient targeting approaches. Moreover, we will summarize the main evidence for the potential of the IL-13R alpha 2 receptor (IL13α2R) targeting in GBM early diagnosis and experimental therapy.

3.
J Am Chem Soc ; 145(2): 1108-1117, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36622303

RESUMO

Telomerase has long been considered as a biomarker for cancer diagnosis and a therapeutic target for drug discovery. Detecting telomerase activity in vivo could provide more direct information of tumor progression and response to drug treatment, which, however, is hampered by the lack of an effective probe that can generate an output signal without a tissue penetration depth limit. In this study, using the principle of distance-dependent magnetic resonance tuning, we constructed a telomerase-activated magnetic resonance imaging probe (TAMP) by connecting superparamagnetic ferroferric oxide nanoparticles (SPFONs) and paramagnetic Gd-DOTA (Gd(III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) complexes via telomerase-responsive DNA motifs. Upon telomerase-catalyzed extension of the primer in TAMP, Gd-DOTA-conjugated oligonucleotides can be liberated from the surface of SPFONs through a DNA strand displacement reaction, restoring the T1 signal of the Gd-DOTA for a direct readout of the telomerase activity. Here we show that, by tracking telomerase activity, this probe provides consistent monitoring of tumor growth kinetics during progression and in response to drug treatment and enables in situ screening of telomerase inhibitors in whole-animal models. This study provides an alternative toolkit for cancer diagnosis, treatment response assessment, and anticancer drug screening.


Assuntos
Telomerase , Animais , Linhagem Celular Tumoral , Telomerase/metabolismo , Cinética , Imageamento por Ressonância Magnética
5.
Angew Chem Int Ed Engl ; 58(15): 4896-4900, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30701643

RESUMO

Herein, we present a light-gated protocell model made of plasmonic colloidal capsules (CCs) assembled with bacteriorhodopsin for converting solar energy into electrochemical gradients to drive the synthesis of energy-storage molecules. This synthetic protocell incorporated an important intrinsic property of noble metal colloidal particles, namely, plasmonic resonance. In particular, the near-field coupling between adjacent metal nanoparticles gave rise to strongly localized electric fields and resulted in a broad absorption in the whole visible spectra, which in turn promoted the flux of photons to bacteriorhodopsin and accelerated the proton pumping kinetics. The cell-like potential of this design was further demonstrated by leveraging the outward pumped protons as "chemical signals" for triggering ATP biosynthesis in a coexistent synthetic protocell population. Hereby, we lay the ground work for the engineering of colloidal supraparticle-based synthetic protocells with higher-order functionalities.


Assuntos
Trifosfato de Adenosina/síntese química , Células Artificiais/química , Luz , Fótons , Ressonância de Plasmônio de Superfície , Trifosfato de Adenosina/química , Bacteriorodopsinas/química , Engenharia Celular , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície
6.
Sci Rep ; 8(1): 2907, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440698

RESUMO

Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy of the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Células HeLa , Humanos , Tamanho da Partícula , Polietilenoglicóis/química
7.
Biomaterials ; 109: 69-77, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27673597

RESUMO

Multimodal-imaging probes offer a novel approach, which can provide detail diagnostic information for the planning of image-guided therapies in clinical practice. Here we report targeted multimodal Nd3+-doped upconversion nanoparticle (UCNP) imaging reporters, integrating both magnetic resonance imaging (MRI) and real-time upconversion luminescence imaging (UCL) capabilities within a single platform. Nd3+-doped UCNPs were synthesized as a core-shell structure showing a bright visible emission upon excitation at the near infrared (minimizing biological overheating and increasing tissue penetration depth) as well as providing strong MRI T2 contrast (high r2/r1 ratio). Transcatheter intra-arterial infusion of Nd3+-doped UCNPs conjugated with anti-CD44-monoclonal antibody allowed for high performance in vivo multimodal UCL and MR imaging of hepatocellular carcinoma (HCC) in an orthotopic rat model. The resulted in vivo multimodal imaging of Nd3+ doped core-shell UCNPs combined with transcatheter intra-arterial targeting approaches successfully discriminated liver tumors from normal hepatic tissues in rats for surgical resection applications. The demonstrated multimodal UCL and MRI imaging capabilities of our multimodal UCNPs reporters suggest strong potential for in vivo visualization of tumors and precise surgical guidance to fill the gap between pre-procedural imaging and intraoperative reality.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Nanopartículas/química , Neodímio/química , Imagem Óptica/métodos , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Linhagem Celular , Sobrevivência Celular , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Humanos , Infusões Intra-Arteriais , Período Intraoperatório , Fígado/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Nanopartículas/administração & dosagem , Tamanho da Partícula , Ratos Sprague-Dawley , Espectrometria de Fluorescência/métodos , Propriedades de Superfície , Distribuição Tecidual
8.
Langmuir ; 29(24): 7425-32, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23351096

RESUMO

Hybrid nanoarchitectures are among the most promising nanotechnology-enabled materials for biomedical applications. Interfacing of nanoparticles with active materials gives rise to the structures with unique multiple functionality. Superparamagnetic iron oxide nanoparticles particles SPION are widely employed in the biology and in developing of advanced medical technologies. Polymeric micelles offer the advantage of multifunctional carriers which can serve as delivery vehicles carrying nanoparticles, hydrophobic chemotherapeutics and other functional materials and molecules. Stimuli-responsive polymers are especially attractive since their properties can be modulated in a controlled manner. Here we report on multifunctional thermo-responsive poly(N-isopropylacrylamide-co-acrylamide)-block-poly(ε-caprolactone) random block copolymer micelles as magnetic hyperthermia-mediated payload release and imaging agents. The combination of copolymers, nanoparticles and doxorubicin drug was tailored the way that the loaded micelles were cable to respond to magnetic heating at physiologically-relevant temperatures. A surface functionalization of the micelles with the integrin ß4 antibody and consequent interfacing of the resulting nanobio hybrid with squamous head and neck carcinoma cells which is known to specifically over-express the A9 antigen resulted in concentration of the micelles on the surface of cells. No inherent cytotoxicity was detected for the magnetic micelles without external stimuli application. Furthermore, SPION-loaded micelles demonstrate significant MRI contrast enhancement abilities.


Assuntos
Magnetismo , Micelas , Nanopartículas , Imageamento por Ressonância Magnética , Microscopia de Força Atômica , Microscopia Confocal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
J Clin Neurosci ; 19(6): 875-80, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22516547

RESUMO

In vivo tracking of gene therapy vectors challenges the investigation and improvement of biodistribution of these agents in the brain, a key feature for their targeting of infiltrative malignant gliomas. The glioma-targeting Ad5/3-cRGD gene therapy vector was covalently bound to super-paramagnetic iron oxide (Fe(3)O(4)) nanoparticles (SPION) to monitor its distribution by MRI. Transduction of labeled and unlabeled vectors was assessed on the U87 glioma cell line and normal human astrocytes (NHA), and was higher in U87 compared to NHA, but was similar between labeled and unlabeled virus. An in vivo study was performed by intracranial subcortical injection of labeled-Ad5/3-cRGD particles into a pig brain. The labeled vector appeared in vivo as a T2-weighted hyperintensity and a T2-gradient echo signal at the injection site, persisting up to 72 hours post-injection. We describe a glioma-targeting vector that is labeled with SPION, thereby allowing for MRI detection with no change in transduction capability.


Assuntos
Adenoviridae/genética , Compostos Férricos/metabolismo , Vetores Genéticos/fisiologia , Nanopartículas , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Dextranos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Ratos , Rodaminas/metabolismo , Fatores de Tempo , Transfecção
10.
IEEE Trans Magn ; 48(11): 3269-3274, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23766544

RESUMO

In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging.

11.
Adv Mater ; 23(24): H136-50, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21506172

RESUMO

This article reports on recent progress in the development of advanced nanoscale photoreactive, magnetic and multifunctional materials applicable to brain cancer diagnostics, imaging, and therapy, with an emphasis on the latest contributions and the novelty of the approach, along with the most promising emergent trends.


Assuntos
Neoplasias Encefálicas/diagnóstico , Nanoestruturas/química , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Meios de Contraste/química , Portadores de Fármacos/química , Corantes Fluorescentes/química , Humanos , Nanopartículas de Magnetita/química , Camundongos , Nanoconchas/química , Polímeros/química , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Radiografia
12.
Methods Mol Biol ; 726: 63-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21424443

RESUMO

Semiconductor photocatalysis using nanoparticulate TiO(2) has proven to be a promising technology for use in catalytic reactions, in the cleanup of water contaminated with hazardous industrial by-products, and in nanocrystalline solar cells as a photoactive material. Metal oxide semiconductor colloids are of considerable interest because of their photocatalytic properties. The coordination sphere of the surface metal atoms is incomplete and thus traps light-induced charges, but also exhibits high affinity for oxygen-containing ligands and gives the opportunity for chemical modification. We use enediol linkers, such as dopamine and its analogs, to bridge the semiconductors to biomolecules such as DNA or proteins. Nanobio hybrids that combine the physical robustness and chemical reactivity of nanoscale metal oxides with the molecular recognition and selectivity of biomolecules were developed. Control of chemical processes within living cells was achieved using TiO(2) nanocomposites in order to develop new tools for advanced nanotherapeutics. Here, we describe general experimental approaches for synthesis and characterization of high crystallinity, water soluble 5 nm TiO(2) particles and their nanobio composites, methods of cellular sample preparation for advanced Synchrotron-based imaging of nanoparticles in single cell X-ray fluorescence, and a detailed experimental setup for application of the high-performance TiO(2)-based nanobio photocatalyst for targeted lysis of cancerous or other disordered cells.


Assuntos
Diagnóstico por Imagem , Nanopartículas Metálicas/uso terapêutico , Titânio/química , Titânio/uso terapêutico , Linhagem Celular , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura
13.
Nat Mater ; 9(2): 165-71, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19946279

RESUMO

Nanomagnetic materials offer exciting avenues for probing cell mechanics and activating mechanosensitive ion channels, as well as for advancing cancer therapies. Most experimental works so far have used superparamagnetic materials. This report describes a first approach based on interfacing cells with lithographically defined microdiscs that possess a spin-vortex ground state. When an alternating magnetic field is applied the microdisc vortices shift, creating an oscillation, which transmits a mechanical force to the cell. Because reduced sensitivity of cancer cells toward apoptosis leads to inappropriate cell survival and malignant progression, selective induction of apoptosis is of great importance for the anticancer therapeutic strategies. We show that the spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane, and initiation of programmed cell death. A low-frequency field of a few tens of hertz applied for only ten minutes was sufficient to achieve approximately 90% cancer-cell destruction in vitro.


Assuntos
Magnetismo , Neoplasias/patologia , Neoplasias/terapia , Anticorpos Monoclonais/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Cálcio/metabolismo , Morte Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Fenômenos Mecânicos , Imagem Molecular , Neoplasias/metabolismo
14.
Nano Lett ; 9(9): 3337-42, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19640002

RESUMO

We report pronounced and specific antiglioblastoma cell phototoxicity of 5 nm TiO(2) particles covalently tethered to an antibody via a dihydroxybenzene bivalent linker. The linker application enables absorption of a visible part of the solar spectrum by the nanobio hybrid. The phototoxicity is mediated by reactive oxygen species (ROS) that initiate programmed death of the cancer cell. Synchrotron X-ray fluorescence microscopy (XFM) was applied for direct visualization of the nanobioconjugate distribution through a single brain cancer cell at the submicrometer scale.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Hidroquinonas/farmacologia , Nanopartículas/química , Titânio/farmacologia , Anticorpos Monoclonais/uso terapêutico , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidroquinonas/química , Teste de Materiais , Modelos Biológicos , Nanotecnologia , Tamanho da Partícula , Fotoquímica , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA