Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 309: 122601, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38713973

RESUMO

Injectable hydrogels are promising for treatment of bone defects in clinic owing to their minimally invasive procedure. Currently, there is limited emphasis on how to utilize injectable hydrogels to mobilize body's regenerative potential for enhancing bone regeneration. Herein, an injectable bone-mimicking hydrogel (BMH) scaffold assembled from nanocomposite microgel building blocks was developed, in which a highly interconnected microporous structure and an inorganic/organic (methacrylated hydroxyapatite and methacrylated gelatin) interweaved nano structure were well-designed. Compared with hydrogels lacking micro-nano structures or only showing microporous structure, the BMH scaffold enhanced the ingrowth of vessels and promoted the formation of dense cellular networks (including stem cells and M2 macrophages), across the entire scaffold at early stage after subcutaneous implantation. Moreover, the BMH scaffold could not only directly trigger osteogenic differentiation of the infiltrated stem cells, but also provided an instructive osteo-immune microenvironment by inducing macrophages into M2 phenotype. Mechanistically, our results reveal that the nano-rough structure of the BMH plays an essential role in inducing macrophage M2 polarization through activating mechanotransduction related RhoA/ROCK2 pathway. Overall, this work offers an injectable hydrogel with micro-nano structure driven bio-responsive abilities, highlighting harnessing body's inherent regenerative potential to realize bone regeneration.


Assuntos
Regeneração Óssea , Hidrogéis , Nanocompostos , Osteogênese , Alicerces Teciduais , Regeneração Óssea/efeitos dos fármacos , Hidrogéis/química , Nanocompostos/química , Animais , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Camundongos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células RAW 264.7 , Durapatita/química , Engenharia Tecidual/métodos , Injeções , Gelatina/química
2.
Nat Commun ; 15(1): 3565, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670999

RESUMO

Bioprinting that can synchronously deposit cells and biomaterials has lent fresh impetus to the field of tissue regeneration. However, the unavoidable occurrence of cell damage during fabrication process and intrinsically poor mechanical stability of bioprinted cell-laden scaffolds severely restrict their utilization. As such, on basis of heart-inspired hollow hydrogel-based scaffolds (HHSs), a mechanical-assisted post-bioprinting strategy is proposed to load cells into HHSs in a rapid, uniform, precise and friendly manner. HHSs show mechanical responsiveness to load cells within 4 s, a 13-fold increase in cell number, and partitioned loading of two types of cells compared with those under static conditions. As a proof of concept, HHSs with the loading cells show an enhanced regenerative capability in repair of the critical-sized segmental and osteoporotic bone defects in vivo. We expect that this post-bioprinting strategy can provide a universal, efficient, and promising way to promote cell-based regenerative therapy.


Assuntos
Bioimpressão , Regeneração Óssea , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Hidrogéis/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Humanos , Osso e Ossos , Camundongos , Células-Tronco Mesenquimais/citologia , Materiais Biocompatíveis/química , Osteoporose/terapia
3.
Biofabrication ; 15(3)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37019117

RESUMO

Refractive disorder is the most prevalent cause of visual impairment worldwide. While treatment of refractive errors can bring improvement to quality of life and socio-economic benefits, there is a need for individualization, precision, convenience, and safety with the chosen method. Herein, we propose using pre-designed refractive lenticules based on poly-NAGA-GelMA (PNG) bio-inks photo-initiated by digital light processing (DLP)-bioprinting for correcting refractive errors. DLP-bioprinting allows PNG lenticules to have individualized physical dimensions with precision achievable to 10µm (µm). Material characteristics of PNG lenticules in tests included optical and biomechanical stability, biomimetical swelling and hydrophilic capability, nutritional and visual functionality, supporting its suitability as stromal implants. Cytocompatibility distinguished by morphology and function of corneal epithelial, stromal, and endothelial cells on PNG lenticules suggested firm adhesion, over 90% viability, phenotypic maintenance instead of excessive keratocyte-myofibroblast transformation.In-vitroimmune response analyzed by illumina RNA sequencing in human peripheral blood mononuclear cells indicated that PNG lenticules activated type-2 immunity, facilitating tissue regeneration and suppressing inflammation.In-vivoperformance assessed using intrastromal keratoplasty models in New Zealand white rabbits illustrated that implantation of PNG lenticules maintained stable optical pathway, induced controlled stromal bio-integration and regeneration, avoided complications such as stromal melt, interface scarring, etc, but exerted no adverse effects on the host. Postoperative follow-up examination on intraocular pressure, corneal sensitivity, and tear production remained unaffected by surgery up to 1-month post-implantation of PNG lenticules. DLP-bioprinted PNG lenticule is a bio-safe and functionally effective stromal implants with customizable physical dimensions, providing potential therapeutic strategies in correction of refractive errors.


Assuntos
Cirurgia da Córnea a Laser , Erros de Refração , Humanos , Animais , Coelhos , Hidrogéis , Células Endoteliais , Leucócitos Mononucleares , Qualidade de Vida , Cirurgia da Córnea a Laser/métodos
4.
Sci Rep ; 13(1): 3194, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823220

RESUMO

Clinical studies have shown that osteoprotegerin (OPG) is reduced in patients with nonalcoholic steatohepatitis (NASH), but the underlying mechanisms are unclear. The current study focuses on the role of OPG in the NASH pathogenesis. OPG knockout mice and wild-type control mice fed a methionine choline-deficient diet (MCD) for 4 weeks resulted in an animal model of NASH. Measurement of triglycerides (TG) in serum and liver to assess steatosis. Hematoxylin eosin (HE), Sirius Red and Masson staining were used to assess the liver damage. Transcriptome sequencing analysis, qPCR and western blot were to analyze changes in lipid metabolism and inflammation-related indicators in the liver. In vivo knockout of OPG resulted in a reduction of TG levels in the liver and a significant increase in serum ALT and AST. The expression of inflammatory factors and fibrosis genes was significantly upregulated in the livers of OPG knockout mice. Transcriptome sequencing analysis showed that OPG knockout significantly enhanced MCD diet-induced activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Mechanistically, OPG may inhibit MAPK signaling pathway activity by upregulating the expression of dual specificity phosphatase 14 (DUSP14), thereby reducing inflammatory injury. OPG could regulate the activity of the MAPK signaling pathway via DUSP14, thus regulating the expression of some inflammatory factors in NASH, it may be a promising target for the treatment of NASH.


Assuntos
Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Osteoprotegerina , Animais , Camundongos , Colina/metabolismo , Deficiência de Colina/metabolismo , Dieta/efeitos adversos , Fosfatases de Especificidade Dupla/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Racemetionina/metabolismo
5.
Cell Death Differ ; 29(10): 1901-1912, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35449211

RESUMO

T helper 2 (Th2) cytokine production by invariant natural killer T (iNKT) cells is involved in the development of asthma, but the regulation of Th2 cytokines in iNKT cells remains unknown. Although it is known that progranulin (PGRN) induces the production of Th2 cytokines in iNKT cells in vivo, the underlying mechanism is not clear. This study aims to investigate the role of PGRN in iNKT cells. The effects of PGRN on the differentiation of iNKT cells was detected by flow cytometry. Then stimulation of iNKT cells and airway resistance were carried out to evaluate the function of PGRN on iNKT cells. Furthermore, the mechanisms of PGRN in regulating iNKT cells was investigated by RT-PCR, WB, confocal and luciferase reporter assays. The absolute number of iNKT cells decreased in PGRN KO mice despite an increase in the percentage of iNKT cells. Furthermore, analyzing the subsets of iNKT cells, we found that NKT2 cells and their IL-4 production were reduced. Mechanistically, the decrease in NKT2 cells in the PGRN KO mice was caused by increased expression of enhancer of zeste homolog 2 (EZH2), that in turn caused increased degradation and altered nuclear localization of PLZF. Interestingly, PGRN signaling decreased expression of EZH2 and treatment of the PGRN KO mice with the EZH2 specific inhibitor GSK343 rescued the defect in NKT2 differentiation, IL-4 generation, and PLZF expression. Altogether, We have revealed a new pathway (PGRN-EZH2-PLZF), which regulates the Th2 responses of iNKT cells and provides a potentially new target for asthma treatment.


Assuntos
Asma , Proteína Potenciadora do Homólogo 2 de Zeste , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Animais , Diferenciação Celular , Citocinas , Interleucina-4 , Camundongos , Camundongos Endogâmicos C57BL , Progranulinas
6.
Biomaterials ; 279: 121216, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34739982

RESUMO

Osteochondral defect repair in osteoarthritis (OA) remains an unsolved clinical problem due to the lack of enough seed cells in the defect and chronic inflammation in the joint. To address this clinical need, we designed a bone marrow-derived mesenchymal stem cell (BMSC)-laden 3D-bioprinted multilayer scaffold with methacrylated hyaluronic acid (MeHA)/polycaprolactone incorporating kartogenin and ß-TCP for osteochondral defect repair within each region. BMSC-laden MeHA was designed to actively introduce BMSCs in situ, and diclofenac sodium (DC)-incorporated matrix metalloproteinase-sensitive peptide-modified MeHA was induced on the BMSC-laden scaffold as an anti-inflammatory strategy. BMSCs in the scaffolds survived, proliferated, and produced large amounts of cartilage-specific extracellular matrix in vitro. The effect of BMSC-laden scaffolds on osteochondral defect repair was investigated in an animal model of medial meniscectomy-induced OA. BMSC-laden scaffolds facilitated chondrogenesis by promoting collagen II and suppressed interleukin 1ß in osteochondral defects of the femoral trochlea. Congruently, BMSC-laden scaffolds significantly improved joint function of the injured leg with respect to the ground support force, paw grip force, and walk gait parameters. Therefore, this research demonstrates the potential of 3D-bioprinted BMSC-laden scaffolds to simultaneously inhibit joint inflammation and promote cartilage defect repair in OA joints.


Assuntos
Bioimpressão , Cartilagem Articular , Células-Tronco Mesenquimais , Alicerces Teciduais , Animais , Biomimética , Condrogênese , Colágeno , Impressão Tridimensional , Ratos , Engenharia Tecidual
7.
Front Cell Dev Biol ; 9: 696602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239878

RESUMO

The adenosine monophosphate (AMP)-activated protein kinase (AMPK) was initially identified as an enzyme acting as an "energy sensor" in maintaining energy homeostasis via serine/threonine phosphorylation when low cellular adenosine triphosphate (ATP) level was sensed. AMPK participates in catabolic and anabolic processes at the molecular and cellular levels and is involved in appetite-regulating circuit in the hypothalamus. AMPK signaling also modulates energy metabolism in organs such as adipose tissue, brain, muscle, and heart, which are highly dependent on energy consumption via adjusting the AMP/ADP:ATP ratio. In clinics, biguanides and thiazolidinediones are prescribed to patients with metabolic disorders through activating AMPK signaling and inhibiting complex I in the mitochondria, leading to a reduction in mitochondrial respiration and elevated ATP production. The role of AMPK in mediating skeletal development and related diseases remains obscure. In this review, in addition to discuss the emerging advances of AMPK studies in energy control, we will also illustrate current discoveries of AMPK in chondrocyte homeostasis, osteoarthritis (OA) development, and the signaling interaction of AMPK with other pathways, such as mTOR (mechanistic target of rapamycin), Wnt, and NF-κB (nuclear factor κB) under OA condition.

8.
Biofabrication ; 12(4): 045003, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32492671

RESUMO

The development of exceptional bioinks with excellent printability, high fidelity, and excellent cell viability maintenance for extrusion bioprinting remains a major challenge. Gelatin is an ideal candidate bioink due to its biocompatibility, biodegradability, and non-immunogenicity. However, its inherently low viscosity and unstable physical gelation under physiological conditions make it unsuitable for direct extrusion bioprinting of tissue-like gelatin constructs with high fidelity. Herein, sequential chemical modification using reversible quadruple-hydrogen-bonded ureido-pyrimidinone (UPy) and enzyme-responsive tyramine moieties (Tyr) were devloped to endow the gelatin with a temperature-programmable viscosity and enzyme-controlled solidification, thus realizing enhanced printability and superior fidelity. As demonstrated in a proof-of-concept study, various cell-laden constructs were built based on our modified gelatin, including two-dimensional human bone marrow mesenchymal stem cell (hBMSC)-laden patterns, three-dimensional interconnected hBMSC-laden scaffolds, a reversible twisting-tension human-scale hBMSC-laden ear, a bicellular tibia-like construct containing hBMSCs and endothelial cells and a hexagonal prism-shaped hepatocyte-laden scaffold. The loaded cells in the construct have high viability of over 90% at 24 h, and show proliferation and protein secretion over one week, suggesting that Gel-UPy-Tyr-based constructs under physiological temperature not only can keep high fidelity, but also can support the growth and functions of the loaded cells.


Assuntos
Bioimpressão , Gelatina/química , Tinta , Temperatura , Animais , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Suínos , Alicerces Teciduais/química
9.
Adv Healthc Mater ; 9(13): e2000353, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424991

RESUMO

The immunologic response toward chronic inflammation or bone regeneration via the accumulation of M1 or M2 macrophages after injury could determine the fate of biomaterial. Human umbilical cord mesenchymal stem cells (hUCMSCs) have a pivotal immunomodulatory property on directing macrophage behaviors. Herein, for the first time, 3D-printed poly(lactide-co-glycolide) (PLGA) scaffolds modified with hUCMSC-derived extracellular matrix (PLGA-ECM) are prepared by a facile tissue engineering technique with physical decellularization and 2.44 ± 0.29 mg cm-3 proteins immobilized on the PLGA-ECM contain multiple soluble cytokines with a sustainable release profile. The PLGA-ECM not only attenuates the foreign body response, but also improves bone regeneration by increasing the accumulation of M2 macrophages in an improved heterotopic transplantation model of SCID mice. Furthermore, the PLGA-ECM scaffolds with the knockdown of transforming growth factor-ß-induced protein (TGFßI/ßig-H3) demonstrate that M2 macrophage accumulation improved by the PLGA-ECM could be attributed to increasing the migration of M2 macrophages and the repolarization of M1 macrophages to M2 phenotype, which are mediated by multiple integrin signaling pathways involving in integrin ß7, integrin α9, and integrin ß1 in a TGFßI-dependent manner. This study presents an effective surface modification strategy of polymeric scaffolds to initiate tissue regeneration and combat inflammatory response by increasing M2 macrophage accumulation.


Assuntos
Matriz Extracelular , Alicerces Teciduais , Animais , Regeneração Óssea , Inflamação , Macrófagos , Camundongos , Camundongos SCID , Fator de Crescimento Transformador beta
10.
Cell Commun Signal ; 18(1): 56, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252758

RESUMO

BACKGROUND: AKT2 is one of the key molecules that involves in the insulin-induced signaling and the development of cancer. In B cells, the function of AKT2 is unclear. METHODS: In this study, we used AKT2 knockout mice model to study the role of AKT2 in BCR signaling and B cell differentiation. RESULTS: AKT2 promotes the early activation of B cells by enhancing the BCR signaling and actin remodeling. B cells from AKT2 KO mice exhibited defective spreading and BCR clustering upon stimulation in vitro. Disruption of Btk-mediated signaling caused the impaired differentiation of germinal center B cells, and the serum levels of both sepecific IgM and IgG were decreased in the immunized AKT2 KO mice. In addition, the actin remodeling was affected due to the decreased level of the activation of WASP, the actin polymerization regulator, in AKT2 KO mice as well. As a crucial regulator of both BCR signaling and actin remodeling during early activation of B cells, the phosphorylation of CD19 was decreased in the AKT2 absent B cells, while the transcription level was normal. CONCLUSIONS: AKT2 involves in the humoral responses, and promotes the BCR signaling and actin remodeling to enhance the activation of B cells via regulating CD19 phosphorylation. Video Abstract.


Assuntos
Actinas/metabolismo , Antígenos CD19/imunologia , Linfócitos B , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
11.
Bioact Mater ; 5(2): 334-347, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32206735

RESUMO

There is a need for synthetic grafts to reconstruct large bone defects using minimal invasive surgery. Our previous study showed that incorporation of Sr into bioactive borate glass cement enhanced the osteogenic capacity in vivo. However, the amount of Sr in the cement to provide an optimal combination of physicochemical properties and capacity to stimulate bone regeneration and the underlying molecular mechanism of this stimulation is yet to be determined. In this study, bone cements composed of bioactive borosilicate glass particles substituted with varying amounts of Sr (0 mol% to 12 mol% SrO) were created and evaluated in vitro and in vivo. The setting time of the cement increased with Sr substitution of the glass. Upon immersion in PBS, the cement degraded and converted more slowly to HA (hydroxyapatite) with increasing Sr substitution. The released Sr2+ modulated the proliferation, differentiation, and mineralization of hBMSCs (human bone marrow mesenchymal stem cells) in vitro. Osteogenic characteristics were optimally enhanced with cement (designated BG6Sr) composed of particles substituted with 6mol% SrO. When implanted in rabbit femoral condyle defects, BG6Sr cement supported better peri-implant bone formation and bone-implant contact, comparing to cements substituted with 0mol% or 9mol% SrO. The underlying mechanism is involved in the activation of Wnt/ß-catenin signaling pathway in osteogenic differentiation of hBMSCs. These results indicate that BG6Sr cement has a promising combination of physicochemical properties and biological performance for minimally invasive healing of bone defects.

12.
ACS Appl Mater Interfaces ; 11(9): 9557-9572, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30720276

RESUMO

It is generally accepted that biodegradable materials greatly influence the nearby microenvironment where cells reside; however, the range of interfacial properties has seldom been discussed due to technical bottlenecks. This study aims to depict biomaterial microenvironment boundaries by correlating interfacial H+ distribution with surrounding cell behaviors. Using a disuse-related osteoporotic mouse model, we confirmed that the abnormal activated osteoclasts could be suppressed under relatively alkaline conditions. The differentiation and apatite-resorption capability of osteoclasts were "switched off" when cultured in titrated material extracts with pH values higher than 7.8. To generate a localized alkaline microenvironment, a series of borosilicates were fabricated and their interfacial H+ distributions were monitored spatiotemporally by employing noninvasive microtest technology. By correlating interfacial H+ distribution with osteoclast "switch on/off" behavior, the microenvironment boundary of the tested material was found to be 400 ± 50 µm, which is broader than the generally accepted value, 300 µm. Furthermore, osteoporotic mice implanted with materials with higher interfacial pH values and boarder effective ranges had lower osteoclast activities and a thicker new bone. To conclude, effective proton microenvironment boundaries of degradable biomaterials were depicted and a weak alkaline microenvironment was shown to promote regeneration of osteoporotic bones possibly by suppressing abnormal activated osteoclasts.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Meios de Cultura/química , Animais , Materiais Biocompatíveis/farmacologia , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Durapatita/química , Feminino , Concentração de Íons de Hidrogênio , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
13.
Adv Sci (Weinh) ; 5(5): 1700848, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876210

RESUMO

Photothermal therapy (PTT) is a fledgling therapeutic strategy for cancer treatment with minimal invasiveness but clinical adoption has been stifled by concerns such as insufficient biodegradability of the PTT agents and lack of an efficient delivery system. Here, black phosphorus (BP) nanosheets are incorporated with a thermosensitive hydrogel [poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA: PLEL)] to produce a new PTT system for postoperative treatment of cancer. The BP@PLEL hydrogel exhibits excellent near infrared (NIR) photothermal performance and a rapid NIR-induced sol-gel transition as well as good biodegradability and biocompatibility in vitro and in vivo. Based on these merits, an in vivo PTT postoperative treatment strategy is established. Under NIR irradiation, the sprayed BP@PLEL hydrogel enables rapid gelation forming a gelled membrane on wounds and offers high PTT efficacy to eliminate residual tumor tissues after tumor removal surgery. Furthermore, the good photothermal antibacterial performance prevents infection and this efficient and biodegradable PTT system is very promising in postoperative treatment of cancer.

14.
Colloids Surf B Biointerfaces ; 162: 279-287, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216515

RESUMO

Although heterogeneous bone scaffolds have shown potential in bone defect repair, their capability of aiding bone regeneration need to be further enhanced. Strontium, one important trace element in bone, has a well-known favorable effect on bone repair. Here a strontium containing scaffold (CPB/PCL/Sr) based on superficially porous calcined porcine bone (CPB) was obtained straightforwardly by sequential coating of SrCl2 and polycaprolactone (PCL). The basic characterization revealed that PCL coating could simultaneously improve the mechanical properties and, more importantly, restrain strontium release. Moreover, in vitro behaviors of human MSCs on CPB, CPB/PCL, and CPB/PCL/Sr were studied in detail. The comprehensive results of proliferation, osteogenic gene expression, ALP staining, and ALP activity demonstrated that PCL coating slightly impaired the bone repair potential of CPB. In contrast, CPB/PCL/Sr better supported the osteogenic differentiation of MSCs than CPB,highlighting the role of strontium. The in vivo test confirmed a better new bone formation of CPB/PCL/Sr than CPB and CPB/PCL. These results verified the superiority of incorporating strontium to improve the bone-forming ability of CPB, offering a promising alternative for bone defect repair.


Assuntos
Fêmur/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Poliésteres/farmacologia , Estrôncio/farmacologia , Alicerces Teciduais , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fêmur/citologia , Fêmur/metabolismo , Feto , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteopontina/genética , Osteopontina/metabolismo , Poliésteres/química , Porosidade , Cultura Primária de Células , Suínos , Engenharia Tecidual
15.
J R Soc Interface ; 14(131)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28615491

RESUMO

Although poly(methylmethacrylate) (PMMA) cements are widely used in orthopaedics, they have numerous drawbacks. This study aimed to improve their bioactivity and osseointegration by incorporating strontium-containing borate bioactive glass (SrBG) as the reinforcement phase and bioactive filler of PMMA cement. The prepared SrBG/PMMA composite cements showed significantly decreased polymerization temperature when compared with PMMA and retained properties of appropriate setting time and high mechanical strength. The bioactivity of SrBG/PMMA composite cements was confirmed in vitro, evidenced by ion release (Ca, P, B and Sr) from SrBG particles. The cellular responses of MC3T3-E1 cells in vitro demonstrated that SrBG incorporation could promote adhesion, migration, proliferation and collagen secretion of cells. Furthermore, our in vivo investigation revealed that SrBG/PMMA composite cements presented better osseointegration than PMMA bone cement. SrBG in the composite cement could stimulate new-bone formation around the interface between the composite cement and host bone at eight and 12 weeks post-implantation, whereas PMMA bone cement only stimulated development of an intervening connective tissue layer. Consequently, the SrBG/PMMA composite cement may be a better alternative to PMMA cement in clinical applications and has promising orthopaedic applications by minimal invasive surgery.


Assuntos
Cimentos Ósseos/química , Boratos/química , Vidro/química , Polimetil Metacrilato/química , Estrôncio/química , Animais , Materiais Biocompatíveis , Desenvolvimento Ósseo , Movimento Celular , Masculino , Camundongos , Células NIH 3T3 , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
16.
Biomaterials ; 35(14): 4255-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24565524

RESUMO

Most commercial dental implants are made of titanium (Ti) because Ti possesses excellent properties such as osseointegration. However, many types of Ti products still suffer from insufficient antibacterial capability and bacterial infection after surgery remains one of the most common and intractable complications. In this study, a dual process encompassing anodization and silver plasma immersion ion implantation (Ag PIII) is utilized to produce titania nanotubes (TiO2-NTs) containing Ag at different sites and depths. The concentration and depth of the incorporated Ag can be tailored readily by changing the PIII parameters. The Ag-embedded TiO2-NTs which retain the nanotubular morphology are capable of sterilizing oral pathogens as opposed to pure Ti plates and pristine TiO2-NTs. Biological assays indicate that the in vitro and in vivo biocompatibility of the sample plasma-implanted at a lower voltage of 0.5 kV (NT-Ag-0.5) is significantly compromised due to the large amount of surface Ag. On the other hand, the sample implanted at 1 kV (NT-Ag-1.0) exhibits unimpaired effects due to the smaller surface Ag accumulation. Sample NT-Ag-1.0 is further demonstrated to possess sustained antibacterial properties due to the large embedded depth of Ag and the technique and resulting materials have large potential in dental implants.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Nanotubos/química , Prata/farmacologia , Titânio/farmacologia , Actinobacillus/efeitos dos fármacos , Animais , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fluorescência , Humanos , Masculino , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Nanotubos/ultraestrutura , Espectroscopia Fotoeletrônica , Gases em Plasma/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Propriedades de Superfície
17.
J Biomed Mater Res A ; 100(12): 3496-502, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22941771

RESUMO

Mechano-growth factor (MGF) is an alternative splicing variant of Insulin-like growth factor I. MGF and its 24 amino acid peptide analog corresponding to the unique C-terminal E-domain (MGF-Ct24E) are the positive regulator for tissue regenesis in bone. A novel biomimetic poly(D, L-lactic acid) (PDLLA) modification was designed and synthesized based on MGF-Ct24E grafted maleic anhydride modified PDLLA (MPLA). MGF-Ct24Es were grafted into the side chain of MPLA via a stable covalent amide bond using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide as the condensing agent to produce biomimetic MPLA materials (MGF-Ct24E-MPLA). Fourier transform infrared spectrometry, amino acid analyzer, and elementary analysis were used to characterize the MGF-Ct24E-MPLA. The hydrophilicity of MGF-Ct24E-MPLA was evaluated by means of the water-uptake ratios and static water contact angle. Data revealed that the grafting efficiency of MGF-Ct24E was about 29.9%. MGF-Ct24E-MPLA had better hydrophilicity than PDLLA and MPLA. The osteoblasts behavior of proliferation, differentiation, and mineralization on PDLLA, MPLA, and MGF-Ct24E-MPLA films was investigated and the results indicated that the introduction of MGF-Ct24E could improve osteoblasts proliferation, mineralization, and delay differentiation. The MGF-Ct24E modified MPLA with higher bioactivity may have potential application for bone tissue engineering.


Assuntos
Materiais Biocompatíveis/síntese química , Materiais Biomiméticos/síntese química , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/síntese química , Ácido Láctico/síntese química , Teste de Materiais , Polímeros/síntese química , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Ácido Láctico/química , Ácido Láctico/farmacologia , Anidridos Maleicos/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Poliésteres , Polímeros/química , Polímeros/farmacologia , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Crânio/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA