Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 101, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581715

RESUMO

Adverse skin reactions caused by ionizing radiation are collectively called radiation dermatitis (RD), and the use of nanomedicine is an attractive approach to this condition. Therefore, we designed and large-scale synthesized fullerenols that showed free radical scavenging ability in vitro. Next, we pretreated X-ray-exposed cells with fullerenols. The results showed that pretreatment with fullerenols significantly scavenged intracellular reactive oxygen species (ROS) produced and enhanced the antioxidant capacity, protecting skin cells from X-ray-induced DNA damage and apoptosis. Moreover, we induced RD in mice by applying 30 Gy of X-ray irradiation, followed by treatment with fullerenols. We found that after treatment, the RD scores dropped, and the histological results systematically demonstrated that topically applied fullerenols could reduce radiation-induced skin epidermal thickening, collagen deposition and skin appendage damage and promote hair regeneration after 35 days. Compared with Trolamine cream, a typical RD drug, fullerenols showed superior radiation protection. Overall, the in vitro and in vivo experiments proved that fullerenols agents against RD.

2.
Ecotoxicol Environ Saf ; 261: 115093, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270882

RESUMO

Polychlorinated biphenyls (PCBs) are a type of persistent organic pollutant (POP). Our previous study demonstrated that exposure to 0.5-50 µg/kg bw PCB138 during postnatal days (PND) 3-21 led to elevated serum uric acid (UA) levels and kidney injury in adult male mice. Given that the prevalence of hyperuricemia (HUA) is significantly lower in women than in men, it is worth investigating whether POP-induced HUA and its secondary kidney injury have sexual dimorphism. Herein, we exposed female mice to 0.5-50 µg/kg bw PCB138 during PND 3-21, resulting in elevated serum UA levels, but without causing significant kidney damage. Concurrently, we found a negative correlation between serum 17ß-estradiol (E2) and serum UA levels. We also observed down-regulation of estrogen receptor (ER) protein levels in the kidneys of the PCB138-exposed groups. Furthermore, our study showed that E2 rescued the increased UA level and cytotoxicity caused by HUA in human renal tubular epithelial (HK-2) cells. Collectively, our findings suggest that E2 likely plays a crucial protective role in PCB138-induced HUA and kidney injury in female mice. Our research highlights the existence of sexual dimorphism in kidney injury secondary to HUA induced by POPs, which could provide guidance for individuals of different genders in preventing kidney injury caused by environmental factors.


Assuntos
Hiperuricemia , Nefropatias , Adulto , Humanos , Masculino , Feminino , Camundongos , Animais , Ácido Úrico , Estradiol , Rim/metabolismo
3.
Environ Pollut ; 311: 119986, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007795

RESUMO

RNA N6-methyladenosine (m6A) modification regulates the cell stress response and homeostasis, but whether titanium dioxide nanoparticle (nTiO2)-induced acute pulmonary injury is associated with the m6A epitranscriptome and the underlying mechanisms remain unclear. Here, the potential association between m6A modification and the bioeffects of several engineered nanoparticles (nTiO2, nAg, nZnO, nFe2O3, and nCuO) were verified thorough in vitro experiments. nFe2O3, nZnO, and nTiO2 exposure significantly increased the global m6A level in A549 cells. Our study further revealed that nTiO2 can induce m6A-mediated acute pulmonary injury. Mechanistically, nTiO2 exposure promoted methyltransferase-like 3 (METTL3)-mediated m6A signal activation and thus mediated the inflammatory response and IL-8 release through the degeneration of anti-Mullerian hormone (AMH) and Mucin5B (MUC5B) mRNAs in a YTH m6A RNA-binding protein 2 (YTHDF2)-dependent manner. Moreover, nTiO2 exposure stabilized METTL3 protein by the lipid reactive oxygen species (ROS)-activated ERK1/2 pathway. The scavenging of ROS with ferrostatin-1 (Fer-1) alleviates the ERK1/2 activation, m6A upregulation, and the inflammatory response caused by nTiO2 both in vitro and in vivo. In conclusion, our study demonstrates that m6A is a potential intervention target for alleviating the adverse effects of nTiO2-induced acute pulmonary injury in vitro and in vivo, which has far-reaching implications for protecting human health and improving the sustainability of nanotechnology.


Assuntos
Lesão Pulmonar , Nanopartículas , Humanos , Metiltransferases , Nanopartículas/toxicidade , RNA , Espécies Reativas de Oxigênio , Titânio/toxicidade
4.
Toxicol Appl Pharmacol ; 450: 116166, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842138

RESUMO

Arsenic is a widely existing pollutant in the environment, but the mechanism of occurrence and development of lung cancer by long-term arsenic exposure needs to be elucidated further. How the high and low doses of arsenic induce human bronchial epithelial cell transformation is yet to be elucidated. In the present study, human bronchial epithelial cells were exposed to varying high-dose sodium arsenite (NaAsO2) for the short-term or treated with low dose for long-term. The data showed that both short- and long-term treatment promoted G1/S transition of Beas-2B cells, inducing a significant increase in the expression of AKAP95, cyclin D1, cyclin D2, and cyclin E1. However, silencing AKAP95 by treating cells with siAKAP95 exerted a protective function that inhibited G1/S transition, suggesting a regulatory mechanism of AKAP95 on the cell cycle during cell malignant transformation induced by NaAsO2. In addition, mitochondrial dysfunctions occurred during NaAsO2 exposure. Beas-2B cells exposed to low-dose NaAsO2 for long-term were subcultured for 20 generations, and the exposure time was positively proportional to the growth and migration rate of the cells. The exposed cells were used in a tumor-bearing transplantation experiment (mice), and the results showed that the longer the exposure time, the faster the tumor volume growth rate of As-Beas-2B cells. Tumor tissues were excised for hematoxylin-eosin staining, which showed altered cell morphology and increased volume.


Assuntos
Arsênio , Animais , Arsênio/efeitos adversos , Brônquios/metabolismo , Carcinogênese/metabolismo , Ciclo Celular , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo
5.
Environ Pollut ; 290: 118050, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461418

RESUMO

Propylene glycol (PG; 1,2-propanediol) has been commonly used as a food additive and vehicle in pharmaceutical preparations. PG can form rectus (R-) enantiomers and sinister (S-) enantiomers. Herein, Kunming mice were used as the animal model to evaluate the acute and subacute oral toxicity of R-PG, S-PG and RS-PG (1:1 racemic mixture of R-PG and S-PG). The median lethal doses of R-PG, S-PG and RS-PG administered by oral gavage to mice were 22.81 g/kg, 26.62 g/kg and 24.92 g/kg, respectively. In the 28-day oral subacute toxicity study, the body weight, organ weights, serum biochemical, and renal histology were examined. There was no difference in subacute toxicity among R-PG, S-PG and RS-PG. The administration of 1 and 5 g/kg/day PG for 28 days caused nephrotoxicity. The kidney somatic index and levels of blood urea nitrogen exhibited a significant increase. Moreover, the activities of superoxide dismutase, catalase, and glutathione peroxidase significantly decreased after the treatment with PG. The levels of malondialdehyde, tumor necrosis factor α, interleukin 1ß, and interleukin 6 significantly increased in the kidney. The results show that the nephrotoxic effects of PG are induced by oxidative stress, and the activation of the inflammatory response is mediated by the NF-κB signaling pathway. Together, these findings provide information on R-PG, S-PG and RS-PG treatments for the risk assessment of toxicity and effects on human health.


Assuntos
Estresse Oxidativo , Propilenoglicol , Animais , Catalase/metabolismo , Rim/metabolismo , Malondialdeído/metabolismo , Camundongos , Propilenoglicol/metabolismo , Propilenoglicol/toxicidade
6.
J Hazard Mater ; 402: 122875, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254732

RESUMO

Black phosphorus quantum dots (BP-QDs) are a new type of zero-dimensional (0D) nanomaterial that has been widely used due of their superior properties in many biomedical fields, but limited studies have focused on the biocompatibility of BP-QDs, particularly in the respiratory system. In this study, we investigated the potential lung cell toxicity of BP-QDs in vitro. Two human lung-derived cells, A549 and Beas-2B, were treated with 5∼20 µg/mL BP-QDs for 24 h. The results showed that BP-QDs triggered significant lung cell toxicity, including a dose-dependent decrease in cell viability, lactate dehydrogenase (LDH) leakage, cell shape changes, cellular oxidative stress and cell cycle arrest. In addition, pretreatment with the classical phagocytosis inhibitor cytochalasin D (Cyto D) alleviated the decrease in cell viability and LDH leakage induced by BP-QDs. In contrast, BP-QDs induced the production of cellular reactive oxygen species (ROS) and decreases in the glutathione level, whereas the ROS scavenger N-acetyl-L-cysteine (NAC) could protect A549 and Beas-2B cells from BP-QD-induced cellular oxidative stress. Taken together, the results from this study indicate that the potential toxic effects and mechanisms of BP-QDs in two different human lung cells should be considered to evaluate the lung cell safety of BP-QDs.


Assuntos
Fósforo , Pontos Quânticos , Sobrevivência Celular , Humanos , Pulmão , Fósforo/toxicidade , Pontos Quânticos/toxicidade , Espécies Reativas de Oxigênio
7.
Nanoscale Adv ; 2(5): 2192-2202, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132527

RESUMO

In the present study, we developed a nano-integrated diagnostic and therapeutic platform with oxidation-reduction reactions in tumor microenvironments (TMEs). The proposed platform resolved the contradiction of particle size between the enhanced permeability and retention (EPR) effect and tumor interstitial penetration, as well as poor circulation and low drug-loading efficiency. Flower-like MnO2 NPs were used as the core and modified with hyaluronate (HA) and H2PtCl6 to obtain MnO2-HA@H2PtCl6 (MHP). The maximum drug-loading efficiency rate of H2PtCl6 reached 35% due to its chelation with HA. MHP showed satisfactory integrity and stability during circulation and can also be used as a magnetic resonance imaging (MRI) contrast agent. In addition, MHP as a radiosensitizer achieved an excellent tumor inhibition effect in combination with radiotherapy. Importantly, MHP released ultra-small nanoparticles, USNPs, (∼20 nm) through the supramolecular self-assembly abilities of Mn2+, HA, and H2PtCl6 in TMEs, leading to the increase of penetration into multicellular spheres and solid tumors (Scheme), as well as prolonging its retention in tumors.

8.
Chemosphere ; 221: 67-74, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30634150

RESUMO

Previous studies have shown the adversely neurodevelopmental effects of exposure to benzo(a)pyrene (BaP) at early life stage. However, it is unclear the effects of lactational exposure to environmentally relevant BaP on anxiety-like behavior and the molecular mechanisms related. In this study, lactational exposure to 1 and 10 µg/kg bw BaP from postnatal day 3-21 caused anxiety-like behavior and alterations of the expressions of the neurodevelopment and anxiety-related genes in adolescence male mice using O cycle maze. Moreover, BaP exposure increased the expression level of glial fibrillary acidic protein, a typical marker of astrocytes, in hippocampus of male offspring. The release of pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α was also elevated in BaP-treated offspring. Further, lactational exposure to BaP decreased the level of glutathione and the expressions of antioxidant genes (Thioredoxin 1 and Glutaredoxin 2) in male offspring. Our study demonstrated that environmentally relevant BaP lactational exposure caused anxiety-like behavior in male offspring involved in astrocytic activation, neuroinflammation, and antioxidant capability dysfunction.


Assuntos
Ansiedade/induzido quimicamente , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzo(a)pireno/farmacologia , Lactação/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Exposição Ambiental/efeitos adversos , Feminino , Masculino , Camundongos , Inflamação Neurogênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA