Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 631, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330525

RESUMO

Inactivation of voltage-gated Na+ channels (VGSC) is essential for the regulation of cellular excitability. The molecular rearrangement underlying inactivation is thought to involve the intracellular linker between domains III and IV serving as inactivation lid, the receptor for the lid (domain III S4-S5 linker) and the pore-lining S6 segements. To better understand the role of the domain IV S6 segment in inactivation we performed a cysteine scanning mutagenesis of this region in rNav 1.4 channels and screened the constructs for perturbations in the voltage-dependence of steady state inactivation. This screen was performed in the background of wild-type channels and in channels carrying the mutation K1237E, which profoundly alters both permeation and gating-properties. Of all tested constructs the mutation I1581C was unique in that the mutation-induced gating changes were strongly influenced by the mutational background. This suggests that I1581 is involved in specific short-range interactions during inactivation. In recently published crystal structures VGSCs the respective amino acids homologous to I1581 appear to control a bend of the S6 segment which is critical to the gating process. Furthermore, I1581 may be involved in the transmission of the movement of the DIII voltage-sensor to the domain IV S6 segment.


Assuntos
Cisteína/genética , Proteínas Musculares/genética , Mutação , Canais de Sódio/genética , Xenopus laevis/genética , Animais , Ativação Enzimática , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Musculares/química , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/química
2.
Mol Pharmacol ; 88(5): 866-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358763

RESUMO

The clinically important suppression of high-frequency discharges of excitable cells by local anesthetics (LA) is largely determined by drug-induced prolongation of the time course of repriming (recovery from inactivation) of voltage-gated Na(+) channels. This prolongation may result from periodic drug-binding to a high-affinity binding site during the action potentials and subsequent slow dissociation from the site between action potentials ("dissociation hypothesis"). For many drugs it has been suggested that the fast inactivated state represents the high-affinity binding state. Alternatively, LAs may bind with high affinity to a native slow-inactivated state, thereby accelerating the development of this state during action potentials ("stabilization hypothesis"). In this case, slow recovery between action potentials occurs from enhanced native slow inactivation. To test these two hypotheses we produced serial cysteine mutations of domain IV segment 6 in rNav1.4 that resulted in constructs with varying propensities to enter fast- and slow-inactivated states. We tested the effect of the LA lidocaine on the time course of recovery from short and long depolarizing prepulses, which, under drug-free conditions, recruited mainly fast- and slow-inactivated states, respectively. Among the tested constructs the mutation-induced changes in native slow recovery induced by long depolarizations were not correlated with the respective lidocaine-induced slow recovery after short depolarizations. On the other hand, for long depolarizations the mutation-induced alterations in native slow recovery were significantly correlated with the kinetics of lidocaine-induced slow recovery. These results favor the "dissociation hypothesis" for short depolarizations but the "stabilization hypothesis" for long depolarizations.


Assuntos
Anestésicos Locais/farmacologia , Lidocaína/farmacologia , Proteínas Musculares/antagonistas & inibidores , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Proteínas Musculares/fisiologia , Mutagênese , Ratos , Canais de Sódio/fisiologia , Relação Estrutura-Atividade
3.
Cell Physiol Biochem ; 33(1): 205-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24481283

RESUMO

BACKGROUND/AIMS: Cell transplantation into the heart is a new therapy after myocardial infarction. Its success, however, is impeded by poor donor cell survival and by limited transdifferentiation of the transplanted cells into functional cardiomyocytes. A promising strategy to overcome these problems is the induction of cardiomyogenic properties in donor cells by small molecules. METHODS: Here we studied cardiomyogenic effects of the small molecule compound cardiogenol C (CgC), and structural derivatives thereof, on lineage-committed progenitor cells by various molecular biological, biochemical, and functional assays. RESULTS: Treatment with CgC up-regulated cardiac marker expression in skeletal myoblasts. Importantly, the compound also induced cardiac functional properties: first, cardiac-like sodium currents in skeletal myoblasts, and secondly, spontaneous contractions in cardiovascular progenitor cell-derived cardiac bodies. CONCLUSION: CgC induces cardiomyogenic function in lineage-committed progenitor cells, and can thus be considered a promising tool to improve cardiac repair by cell therapy.


Assuntos
Compostos de Anilina/farmacologia , Biomarcadores/metabolismo , Linhagem da Célula/efeitos dos fármacos , Miocárdio/metabolismo , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação para Cima/efeitos dos fármacos , Compostos de Anilina/química , Animais , Fator Natriurético Atrial/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Pirimidinas/química , Ratos , Bibliotecas de Moléculas Pequenas/química , Células-Tronco , Fatores de Transcrição/metabolismo
4.
Toxicol Appl Pharmacol ; 273(2): 259-68, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707769

RESUMO

The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 µM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias.


Assuntos
Comportamento Aditivo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Ibogaína/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/metabolismo , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/fisiologia , Feminino , Cobaias , Humanos , Ibogaína/química , Ibogaína/uso terapêutico , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/fisiologia , Miócitos Cardíacos/fisiologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA