Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Elife ; 112022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35856493

RESUMO

In the striatum, acetylcholine (ACh) neuron activity is modulated co-incident with dopamine (DA) release in response to unpredicted rewards and reward-predicting cues and both neuromodulators are thought to regulate each other. While this co-regulation has been studied using stimulation studies, the existence of this mutual regulation in vivo during natural behavior is still largely unexplored. One long-standing controversy has been whether striatal DA is responsible for the induction of the cholinergic pause or whether DA D2 receptors (D2Rs) modulate a pause that is induced by other mechanisms. Here, we used genetically encoded sensors in combination with pharmacological and genetic inactivation of D2Rs from cholinergic interneurons (CINs) to simultaneously measure ACh and DA levels after CIN D2R inactivation in mice. We found that CIN D2Rs are not necessary for the initiation of cue-induced decrease in ACh levels. Rather, they prolong the duration of the decrease and inhibit ACh rebound levels. Notably, the change in cue-evoked ACh levels is not associated with altered cue-evoked DA release. Moreover, D2R inactivation strongly decreased the temporal correlation between DA and ACh signals not only at cue presentation but also during the intertrial interval pointing to a general mechanism by which D2Rs coordinate both signals. At the behavioral level D2R antagonism increased the latency to lever press, which was not observed in CIN-selective D2R knock out mice. Press latency correlated with the cue-evoked decrease in ACh levels and artificial inhibition of CINs revealed that longer inhibition shortens the latency to press compared to shorter inhibition. This supports a role of the ACh signal and it's regulation by D2Rs in the motivation to initiate actions.


Assuntos
Acetilcolina , Corpo Estriado , Receptores de Dopamina D2 , Acetilcolina/análise , Acetilcolina/metabolismo , Animais , Colinérgicos , Corpo Estriado/metabolismo , Sinais (Psicologia) , Dopamina , Camundongos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
2.
Cell Rep ; 29(5): 1147-1163.e5, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665630

RESUMO

Alcohol produces both stimulant and sedative effects in humans and rodents. In humans, alcohol abuse disorder is associated with a higher stimulant and lower sedative responses to alcohol. Here, we show that this association is conserved in mice and demonstrate a causal link with another liability factor: low expression of striatal dopamine D2 receptors (D2Rs). Using transgenic mouse lines, we find that the selective loss of D2Rs on striatal medium spiny neurons enhances sensitivity to ethanol stimulation and generates resilience to ethanol sedation. These mice also display higher preference and escalation of ethanol drinking, which continues despite adverse outcomes. We find that striatal D1R activation is required for ethanol stimulation and that this signaling is enhanced in mice with low striatal D2Rs. These data demonstrate a link between two vulnerability factors for alcohol abuse and offer evidence for a mechanism in which low striatal D2Rs trigger D1R hypersensitivity, ultimately leading to compulsive-like drinking.


Assuntos
Alcoolismo/metabolismo , Corpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Alcoolismo/fisiopatologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Etanol/toxicidade , Deleção de Genes , Hipnóticos e Sedativos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Quinina , Receptores de Dopamina D1/metabolismo , Reflexo/efeitos dos fármacos , Transdução de Sinais
3.
Vertex ; 29(138): 102-110, 2018 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-30605182

RESUMO

The obesity epidemic began more than two decades ago and is currently expanding. The World Health Organization reported the existence of 2 billion overweight people, of which more than 650 million are obese, therefore more likely to suffer a higher incidence of heart attacks, stroke and cancer as the leading causes of morbidity and mortality. This article analyzes recent socio-cultural modifcations that separated humans from the primary food sources and transformed us from skilled hunters into remorseless scavengers. This separation made us vulnerable to the ups and downs of the global economy and to the interests of powerful agro-industrial conglomerates and their professional spokespeople who aim to re-teach us what we need to eat to be healthy and fit. In this classical conflict, where reason and madness erase the diffuse borders between health and disease, there are questions that deserve defnitive answers. Are obese people sick individuals who cannot control their willpower? Are they addicts involved in self-destructive behaviors? Or they are just victims of an unmerciful hyperconsumerist system where gluttony has become a daily way of life?


Assuntos
Obesidade , Pandemias , Humanos , Obesidade/epidemiologia
4.
Aging Cell ; 17(1)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29168299

RESUMO

Weight loss is an effective intervention for diminishing disease burden in obese older adults. Pharmacological interventions that reduce food intake and thereby promote weight loss may offer effective strategies to reduce age-related disease. We previously reported that 17α-estradiol (17α-E2) administration elicits beneficial effects on metabolism and inflammation in old male mice. These observations were associated with reduced calorie intake. Here, we demonstrate that 17α-E2 acts through pro-opiomelanocortin (Pomc) expression in the arcuate nucleus (ARC) to reduce food intake and body mass in mouse models of obesity. These results confirm that 17α-E2 modulates appetite through selective interactions within hypothalamic anorexigenic pathways. Interestingly, some peripheral markers of metabolic homeostasis were also improved in animals with near complete loss of ARC Pomc transcription. This suggests that 17α-E2 might have central and peripheral actions that can beneficially affect metabolism cooperatively or independently.


Assuntos
Estradiol/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Pró-Opiomelanocortina/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Comportamento Animal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo
5.
Am J Physiol Endocrinol Metab ; 311(6): E974-E988, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802964

RESUMO

We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.


Assuntos
Adipócitos/metabolismo , Hepatócitos/metabolismo , Hiperprolactinemia/genética , Fígado/metabolismo , Obesidade/genética , Receptores de Dopamina D2/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Ensaio de Imunoadsorção Enzimática , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase/genética , Hiperprolactinemia/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Lactotrofos/metabolismo , Lipogênese/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Obesidade/metabolismo , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Prolactina/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
6.
Mol Metab ; 5(3): 245-252, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26977396

RESUMO

OBJECTIVE: Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC) peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified. METHODS: Given that a 5-hydroxytryptamine 2c receptor (5-HT2CR) agonist is a current obesity medication and 5-HT2CR agonist's effects on appetite are primarily mediated via POMC neurons, we hypothesized that a critical source of POMC regulating food intake and body weight is specifically synthesized in cells containing 5-HT2CRs. To exclusively manipulate Pomc synthesis only within 5-HT2CR containing cells, we generated a novel 5-HT 2C R (CRE) mouse line and intercrossed it with Cre recombinase-dependent and hypothalamic specific reactivatable Pomc (NEO) mice to restrict Pomc synthesis to the subset of hypothalamic cells containing 5-HT2CRs. This provided a means to clarify the specific contribution of a defined subgroup of POMC peptides in energy balance and body weight. RESULTS: Here we transform genetically programed obese and hyperinsulinemic male mice lacking hypothalamic Pomc with increased appetite, reduced physical activity and compromised brown adipose tissue (BAT) into lean, healthy mice via targeted restoration of Pomc function only within 5-HT2CR expressing cells. Remarkably, the same metabolic transformation does not occur in females, who despite corrected feeding behavior and normalized insulin levels remain physically inactive, have lower energy expenditure, compromised BAT and develop obesity. CONCLUSIONS: These data provide support for the functional heterogeneity of hypothalamic POMC neurons, revealing that Pomc expression within 5-HT2CR expressing neurons is sufficient to regulate energy intake and insulin sensitivity in male and female mice. However, an unexpected sex difference in the function of this subset of POMC neurons was identified with regard to energy expenditure. We reveal that a large sex difference in physical activity, energy expenditure and the development of obesity is driven by this subpopulation, which constitutes approximately 40% of all POMC neurons in the hypothalamic arcuate nucleus. This may have broad implications for strategies utilized to combat obesity, which at present largely ignore the sex of the obese individual.

7.
Proc Natl Acad Sci U S A ; 112(15): E1861-70, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825735

RESUMO

Food intake and body weight regulation depend on proper expression of the proopiomelanocortin gene (Pomc) in a group of neurons located in the mediobasal hypothalamus of all vertebrates. These neurons release POMC-encoded melanocortins, which are potent anorexigenic neuropeptides, and their absence from mice or humans leads to hyperphagia and severe obesity. Although the pathophysiology of hypothalamic POMC neurons is well understood, the genetic program that establishes the neuronal melanocortinergic phenotype and maintains a fully functional neuronal POMC phenotype throughout adulthood remains unknown. Here, we report that the early expression of the LIM-homeodomain transcription factor Islet 1 (ISL1) in the developing hypothalamus promotes the terminal differentiation of melanocortinergic neurons and is essential for hypothalamic Pomc expression since its initial onset and throughout the entire lifetime. We detected ISL1 in the prospective hypothalamus just before the onset of Pomc expression and, from then on, Pomc and Isl1 coexpress. ISL1 binds in vitro and in vivo to critical homeodomain binding DNA motifs present in the neuronal Pomc enhancers nPE1 and nPE2, and mutations of these sites completely disrupt the ability of these enhancers to drive reporter gene expression to hypothalamic POMC neurons in transgenic mice and zebrafish. ISL1 is necessary for hypothalamic Pomc expression during mouse and zebrafish embryogenesis. Furthermore, conditional Isl1 inactivation from POMC neurons impairs Pomc expression, leading to hyperphagia and obesity. Our results demonstrate that ISL1 specifies the identity of hypothalamic melanocortin neurons and is required for melanocortin-induced satiety and normal adiposity throughout the entire lifespan.


Assuntos
Adiposidade/fisiologia , Ingestão de Alimentos/fisiologia , Proteínas com Homeodomínio LIM/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Fatores de Transcrição/metabolismo , Adiposidade/genética , Animais , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Ingestão de Alimentos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Hiperfagia/genética , Hiperfagia/fisiopatologia , Hipotálamo/citologia , Hipotálamo/embriologia , Hipotálamo/metabolismo , Proteínas com Homeodomínio LIM/genética , Masculino , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Dados de Sequência Molecular , Neurônios/citologia , Obesidade/genética , Obesidade/fisiopatologia , Pró-Opiomelanocortina/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
8.
Endocrinology ; 156(3): 1040-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25545383

RESUMO

Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2(-/-)) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female-predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2(-/-) female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease.


Assuntos
Encéfalo/metabolismo , Fígado/metabolismo , Hipófise/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Hormônio do Crescimento/sangue , Hormônio do Crescimento/metabolismo , Lactotrofos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteínas/genética , Proteínas/metabolismo , Receptores de Dopamina D2/genética , Caracteres Sexuais
9.
J Neurosci ; 33(13): 5834-42, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23536095

RESUMO

Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.


Assuntos
Tamanho Corporal/fisiologia , Hormônio do Crescimento/metabolismo , Hipófise/metabolismo , Prolactina/metabolismo , Receptores de Dopamina D2/metabolismo , Análise de Variância , Animais , Benzamidas/farmacocinética , Tamanho Corporal/efeitos dos fármacos , Tamanho Corporal/genética , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Estudos de Casos e Controles , Catatonia/induzido quimicamente , Catatonia/metabolismo , Antagonistas de Dopamina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Haloperidol/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas de Filamentos Intermediários/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Nestina , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Feromônios/urina , Hipófise/efeitos dos fármacos , Prolactina/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas/metabolismo , Radioimunoensaio , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/genética , Predomínio Social , Territorialidade , Trítio/farmacocinética
10.
Cancer Res ; 73(13): 4086-97, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23536557

RESUMO

Neuroblastoma, the most common extracranial pediatric solid tumor, is responsible for 15% of all childhood cancer deaths. Patients frequently present at diagnosis with metastatic disease, particularly to the bone marrow. Advances in therapy and understanding of the metastatic process have been limited due, in part, to the lack of animal models harboring bone marrow disease. The widely used transgenic model, the Th-MYCN mouse, exhibits limited metastasis to this site. Here, we establish the first genetic immunocompetent mouse model for metastatic neuroblastoma with enhanced secondary tumors in the bone marrow. This model recapitulates 2 frequent alterations in metastatic neuroblastoma, overexpression of MYCN and loss of caspase-8 expression. Mouse caspase-8 gene was deleted in neural crest lineage cells by crossing a Th-Cre transgenic mouse with a caspase-8 conditional knockout mouse. This mouse was then crossed with the neuroblastoma prone Th-MYCN mouse. Although overexpression of MYCN by itself rarely caused bone marrow metastasis, combining MYCN overexpression and caspase-8 deletion significantly enhanced bone marrow metastasis (37% incidence). Microarray expression studies of the primary tumors mRNAs and microRNAs revealed extracellular matrix structural changes, increased expression of genes involved in epithelial to mesenchymal transition, inflammation, and downregulation of miR-7a and miR-29b. These molecular changes have been shown to be associated with tumor progression and activation of the cytokine TGF-ß pathway in various tumor models. Cytokine TGF-ß can preferentially promote single cell motility and blood-borne metastasis and therefore activation of this pathway may explain the enhanced bone marrow metastasis observed in this animal model.


Assuntos
Neoplasias da Medula Óssea/enzimologia , Caspase 8/genética , Ganglioneuroblastoma/enzimologia , Neoplasias do Sistema Nervoso Periférico/enzimologia , Proteínas Proto-Oncogênicas/genética , Animais , Neoplasias da Medula Óssea/genética , Neoplasias da Medula Óssea/secundário , Caspase 8/metabolismo , Modelos Animais de Doenças , Ganglioneuroblastoma/genética , Ganglioneuroblastoma/secundário , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Proto-Oncogênica N-Myc , Neoplasias do Sistema Nervoso Periférico/genética , Neoplasias do Sistema Nervoso Periférico/patologia , Transcriptoma
11.
J Clin Invest ; 122(11): 4203-12, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23093774

RESUMO

Obesity is a chronic metabolic disorder affecting half a billion people worldwide. Major difficulties in managing obesity are the cessation of continued weight loss in patients after an initial period of responsiveness and rebound to pretreatment weight. It is conceivable that chronic weight gain unrelated to physiological needs induces an allostatic regulatory state that defends a supranormal adipose mass despite its maladaptive consequences. To challenge this hypothesis, we generated a reversible genetic mouse model of early-onset hyperphagia and severe obesity by selectively blocking the expression of the proopiomelanocortin gene (Pomc) in hypothalamic neurons. Eutopic reactivation of central POMC transmission at different stages of overweight progression normalized or greatly reduced food intake in these obesity-programmed mice. Hypothalamic Pomc rescue also attenuated comorbidities such as hyperglycemia, hyperinsulinemia, and hepatic steatosis and normalized locomotor activity. However, effectiveness of treatment to normalize body weight and adiposity declined progressively as the level of obesity at the time of Pomc induction increased. Thus, our study using a novel reversible monogenic obesity model reveals the critical importance of early intervention for the prevention of subsequent allostatic overload that auto-perpetuates obesity.


Assuntos
Tecido Adiposo/fisiopatologia , Adiposidade , Ingestão de Alimentos , Hipotálamo/fisiopatologia , Obesidade/prevenção & controle , Obesidade/fisiopatologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Hiperfagia/fisiopatologia , Hiperfagia/prevenção & controle , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
12.
Cell Metab ; 14(2): 145-7, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21803282

RESUMO

Hypothalamic pro-opiomelanocortin (POMC) neurons are the major source of anorectic melanocortin peptides in the brain. A recent study (Mineur et al., 2011) demonstrates that nicotine directly stimulates arcuate POMC neurons through nicotinic acetylcholinergic α3ß4 receptors, suggesting a new mechanism to understand the inverse relationship between tobacco smoking and body weight.

13.
Endocrinology ; 152(5): 1901-10, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21343252

RESUMO

Arachidonic acid (AA) is generated in the anterior pituitary gland upon stimulation by the ACTH secretagogue, CRH. Using the patch clamp technique, we examined the action of AA on the excitability of single pituitary corticotropes obtained from a transgenic mouse strain that expresses the enhanced green fluorescent protein driven by the proopiomelanocortin promoter. CRH evoked depolarization, but AA caused hyperpolarization. Under voltage clamp condition, AA caused a rapid inhibition of the delayed rectifier K(+) current and then increased a background K(+) current. Inhibition of AA metabolism did not prevent the activation of the K(+) current by AA, suggesting a direct action of AA. The sensitivity of the AA-activated K(+) current to fluoxetine, chlorpromazine, extracellular acidification, diphenylbutylpiperidine antipsychotics, and the membrane permeable cAMP analog [8-(4-chlorophenylthio)-cAMP] suggest that the current is mediated via TWIK-related K(+) channel (TREK)-1 channels. Activation of the CRH receptors that are coupled to the adenylate cyclase pathway suppressed the activation of TREK-1 current by AA and reversed the AA-mediated hyperpolarization. Intracellular acidification (pH 7.0) increased the basal amplitude of TREK-1 current and resulted in hyperpolarizaton. CRH suppressed the basal TREK-1 current in cells with intracellular acidification and caused depolarization. Our finding indicates that TREK-1 channels are important in setting the resting potential in corticotropes. The opposing actions of CRH and AA on the excitability of corticotropes raise the possibility that AA may act as a negative feedback regulator to reduce the stimulatory action of CRH and thus prevent excessive ACTH release during chronic stress.


Assuntos
Ácido Araquidônico/farmacologia , Corticotrofos/fisiologia , Hormônio Liberador da Corticotropina/farmacologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Animais , Células Cultivadas , Clorpromazina/farmacologia , Corticotrofos/citologia , Corticotrofos/metabolismo , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Fluoxetina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Técnicas de Patch-Clamp , Tionucleotídeos/farmacologia
14.
J Neurosci ; 28(52): 14097-106, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19109492

RESUMO

The LIM homeodomain transcription factor Lmx1b has been suggested to be required for the differentiation of midbrain dopaminergic (mDA) neurons. However, whether the loss of mDA neurons in Lmx1b(-/-) mice is due to its intrinsic role in the mDA lineage or to a consequence of the malformations caused by the earlier mid/hindbrain patterning defects remains to be clarified. We report here that Lmx1b expression in mDA neurons is dispensable for their differentiation and maintenance, and the loss of mDA neurons in Lmx1b(-/-) mice is due to the disruption of inductive activity of the isthmic organizer (IsO) in the absence of Lmx1b at the mid/hindbrain boundary (MHB). We found that mDA neurons revealed by tyrosine hydroxylase (TH), Pitx3, Nurr1, and dopamine transporter were indistinguishable from wild-type controls during embryonic development as well as in adulthood in TH-Cre;Lmx1b(flox/-) and Dat(Cre/+);Lmx1b(flox/-) mice, in which Lmx1b was selectively deleted in differentiating mDA neurons. In addition, mDA neurons were recovered in Lmx1b(-/-) mice, when IsO activity was restored by Wnt1-Lmx1b transgene at MHB. The restored IsO activity was evidenced by apparently normal tectum and cerebellum and recurrence of expression of Fgf8 and Wnt1 at MHB in Wnt1(Lmx1b);Lmx1b(-/-). Furthermore, when Lmx1b was deleted in the whole brain after the formation of IsO by Nestin-Cre, mDA neurons were normal, whereas serotonergic neurons displayed defective development phenocopying what observed in Lmx1b(-/-) mice. Thus, our results indicate that the inductive activity of IsO is essential, but Lmx1b expression in mDA neurons is dispensable for their differentiation and maintenance.


Assuntos
Padronização Corporal/fisiologia , Dopamina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Mesencéfalo , Neurônios/fisiologia , Rombencéfalo/fisiologia , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Padronização Corporal/genética , Bromodesoxiuridina/metabolismo , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Embrião de Mamíferos , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Proteínas de Filamentos Intermediários/genética , Proteínas com Homeodomínio LIM , Mesencéfalo/citologia , Mesencéfalo/embriologia , Mesencéfalo/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Nestina , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Gravidez , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Tirosina 3-Mono-Oxigenase/genética , Proteína Wnt1/genética
15.
Dev Biol ; 320(1): 12-8, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18571638

RESUMO

Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. Epididymal protein CRISP1, a member of the Cysteine-RIch Secretory Protein (CRISP) family, was identified by our laboratory and postulated to participate in both sperm-zona pellucida (ZP) interaction and gamete fusion by binding to egg-complementary sites. To elucidate the functional role of CRISP1 in vivo, we disrupted the Crisp1 gene and evaluated the effect on animal fertility and several sperm parameters. Male and female Crisp1(-/-) animals exhibited no differences in fertility compared to controls. Sperm motility and the ability to undergo a spontaneous or progesterone-induced acrosome reaction were neither affected in Crisp1(-/-) mice. However, the level of protein tyrosine phosphorylation during capacitation was clearly lower in mutant sperm than in controls. In vitro fertilization assays showed that Crisp1(-/-) sperm also exhibited a significantly reduced ability to penetrate both ZP-intact and ZP-free eggs. Moreover, when ZP-free eggs were simultaneously inseminated with Crisp1(+/+) and Crisp1(-/-) sperm in a competition assay, the mutant sperm exhibited a greater disadvantage in their fusion ability. Finally, the finding that the fusion ability of Crisp1(-/-) sperm was further inhibited by the presence of CRISP1 or CRISP2 during gamete co-incubation, supports that another CRISP cooperates with CRISP1 during fertilization and might compensate for its lack in the mutant mice. Together, these results indicate that CRISP proteins are players in the mammalian fertilization process. To our knowledge this is the first knockout mice generated for a CRISP protein. The information obtained might have important functional implications for other members of the widely distributed and evolutionarily conserved CRISP family.


Assuntos
Fertilização/fisiologia , Glicoproteínas de Membrana/deficiência , Espermatozoides/fisiologia , Reação Acrossômica , Animais , Fertilidade , Marcação de Genes , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Capacitação Espermática
16.
J Endocrinol ; 190(3): 611-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17003262

RESUMO

Recently, the importance of the dopaminergic D2 receptor (D2R) subtype in normal body growth and neonatal GH secretion has been highlighted. Disruption of D2R alters the GHRH-GH-IGF-I axis and impairs body growth in adult male mice. The D2R knockout (KO) dwarf mouse has not been well characterized; we therefore sought to determine somatotrope function in the adult pituitary. Using immunohistochemistry and confocal microscopy, we found a significant decrease in the somatotrope population in pituitaries from KO mice (P=0.043), which was paralleled by a decreased GH output from pituitary cells cultured in vitro. In cells from adult mice the response amplitude to GHRH differed between genotypes (lower in KO), but this difference was less dramatic after taking into account the lower basal release and hormone content in the KO cells. Furthermore, there were no significant differences in cAMP generation in response to GHRH between genotypes. By Western blot, GHRH-receptor in pituitary membranes from KO mice was reduced to 46% of the level found in wildtype (WT) mice (P=0.016). Somatostatin induced a concentration-dependent decrease in GH and prolactin (PRL) secretion in both genotypes, and 1x10(-7) M ghrelin released GH in cells from both genotypes (P=0.017) in a proportionate manner to basal levels. These results suggest that KO somatotropes maintain a regulated secretory function. Finally, we tested the direct effect of dopamine on GH and PRL secretion in cells from both genotypes at 20 days and 6 months of life. As expected, we found that dopamine could reduce PRL levels at both ages in WT mice but not in KO mice, but there was no consistent effect of the neurotransmitter on GH release in either genotype at the ages studied. The present study demonstrates that in the adult male D2R KO mouse, there is a reduction in pituitary GH content and secretory activity. Our results point to an involvement of D2R signaling at the hypothalamic level as dopamine did not release GH acting at the pituitary level either in 1-month-old or adult mice. The similarity of the pituitary defect in the D2R KO mouse to that of GHRH-deficient models suggests a probable mechanism. A loss of dopamine signaling via hypothalamic D2Rs at a critical age causes the reduced release of GHRH from hypophyseotropic neurons leading to inadequate clonal expansion of the somatotrope population. Our data also reveal that somatotrope cell number is much more sensitive to changes in neonatal GHRH input than their capacity to develop properly regulated GH-secretory function.


Assuntos
Nanismo/metabolismo , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Hormônio do Crescimento/metabolismo , Hipófise/metabolismo , Receptores de Dopamina D2/genética , Somatostatina/farmacologia , Animais , Western Blotting/métodos , Células Cultivadas , AMP Cíclico/análise , AMP Cíclico/biossíntese , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Grelina , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Hormônios Peptídicos/farmacologia , Hipófise/citologia , Hipófise/efeitos dos fármacos , Prolactina/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Neuropeptídeos/análise , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/análise , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo
17.
Front Horm Res ; 35: 50-63, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16809922

RESUMO

Dopamine receptor type 2 (D2R) knockout mice (KO) have chronic hyperprolactinemia, pituitary hyperplasia, and a moderate decrease in MSH content. They are also growth retarded evidencing an alteration in the GH-IGF-I axis. In D2R KO, lactotropes do not show dense secretory granules but degranulated cells and fewer somatotropes, gonadotropes and thyrotropes. Prolactin levels are always higher in female than in male knockouts, and in accordance, pituitary hyperplasia is observed at 8 months only in females. After 16 months of age, highly vascularized adenomas develop, especially in females. Prominent vascular channels in the hyperplastic and adenomatous pituitaries, as well as extravasated red blood cells not contained in capillaries is also a common finding. Prolactin is not the factor that enhances the hyperplastic phenotype in females while estrogen is a permissive factor. VEGF-A expression is increased in pituitaries from D2R KO. VEGF-A is expressed in follicle stellate cells. Because D2R receptors are found in lactotropes and not in follicle stellate cells, it may be inferred that a paracrine-derived factor from lactotropes is acting on follicle stellate cells to increase VEGF-A expression. VEGF-A does not induce pituitary cell proliferation, even though it enhances prolactin secretion. But it may act on adjacent endothelial cells and participate in the angiogenic process that increases the availability of different growth factors and mitogens. The D2R knockout mouse represents a unique animal model to study dopamine-resistant prolactinomas, and VEGF-A may be an alternative therapeutic target in this pathology.


Assuntos
Modelos Animais de Doenças , Camundongos Knockout/genética , Neoplasias Hipofisárias/genética , Prolactinoma/genética , Receptores de Dopamina D2/genética , Animais , Adesão Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Hiperplasia/etiologia , Masculino , Camundongos , Neovascularização Patológica , Peliose Hepática/etiologia , Hipófise/patologia , Prolactinoma/irrigação sanguínea , Prolactinoma/complicações , Receptores de Dopamina D2/deficiência , Caracteres Sexuais , Fator A de Crescimento do Endotélio Vascular/fisiologia
18.
Life Sci ; 77(2): 130-9, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15862598

RESUMO

Dopamine (DA) signals are transmitted via specific receptors including the D2 receptors (D2R). Previous studies have shown that D2R upregulation in the nucleus accumbens (NAc) attenuated alcohol consumption. We hypothesized that upregulation of D2R in the NAc would significantly influence alcohol drinking. We tested this hypothesis by determining the effect that D2R upregulation has on alcohol intake in genetically altered mice lacking D2Rs. After a steady baseline of drinking behavior was established for all mice, a null vector or a genetically modified adenoviral vector containing the rat D2R cDNA was infused into the NAc of wild-type (Drd2+/+), heterozygous (Drd2+/-), and receptor-deficient mice (Drd2-/-). Ethanol intake and preference were then determined using the two-bottle choice paradigm. Our results indicated that Drd2+/+ mice treated with the D2R vector significantly attenuated (58 %) their ethanol intake as well as reduced preference. Drd2+/- and mutant mice showed a similar attenuation, although the change was not as marked (12 %) and did not last as long. In contrast, Drd2-/- mice treated with the D2R vector displayed a temporary but significant increase (46 %) in ethanol intake and preference (consumption). These results supported the notion that the D2R plays an important role in alcohol consumption in mice and suggest that a key threshold range of D2R levels is associated with elevated alcohol consumption. Significant deviations in D2R levels from this range could impact alcohol consumption, and could help to explain possible individual variations in alcohol response, metabolism, sensitivity and consumption.


Assuntos
Consumo de Bebidas Alcoólicas , Terapia Genética , Receptores de Dopamina D2/genética , Animais , Condicionamento Psicológico , Transferência Genética Horizontal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/fisiologia
19.
Mol Cell Biol ; 25(8): 3076-86, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15798195

RESUMO

The proopiomelanocortin (POMC) gene is expressed in the pituitary and arcuate neurons of the hypothalamus. POMC arcuate neurons play a central role in the control of energy homeostasis, and rare loss-of-function mutations in POMC cause obesity. Moreover, POMC is the prime candidate gene within a highly significant quantitative trait locus on chromosome 2 associated with obesity traits in several human populations. Here, we identify two phylogenetically conserved neuronal POMC enhancers designated nPE1 (600 bp) and nPE2 (150 bp) located approximately 10 to 12 kb upstream of mammalian POMC transcriptional units. We show that mouse or human genomic regions containing these enhancers are able to direct reporter gene expression to POMC hypothalamic neurons, but not the pituitary of transgenic mice. Conversely, deletion of nPE1 and nPE2 in the context of the entire transcriptional unit of POMC abolishes transgene expression in the hypothalamus without affecting pituitary expression. Our results indicate that the nPEs are necessary and sufficient for hypothalamic POMC expression and that POMC expression in the brain and pituitary is controlled by independent sets of enhancers. Our study advances the understanding of the molecular nature of hypothalamic POMC neurons and will be useful to determine whether polymorphisms in POMC regulatory regions play a role in the predisposition to obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Filogenia , Pró-Opiomelanocortina/genética , Animais , Núcleo Arqueado do Hipotálamo/citologia , Sequência de Bases , Sequência Conservada , Análise Mutacional de DNA , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neurônios/química , Neurônios/metabolismo , Obesidade/genética , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Polimorfismo Genético , Pró-Opiomelanocortina/análise , Pró-Opiomelanocortina/metabolismo , Deleção de Sequência
20.
Psychopharmacology (Berl) ; 170(1): 108-14, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12783155

RESUMO

RATIONALE: Previous studies have found a role for dopamine D(2)-like receptors in many of the behavioral effects of cocaine, including its stimulation of locomotor activity and interoceptive discriminative-stimulus effects. However, given the lack of selectivity of most of the available pharmacological tools among D(2), D(3) and D(4) dopamine receptors, the roles of these specific receptors remain unclear. OBJECTIVES: The roles of specific dopamine D(4) receptors in the behavioral effects of cocaine, including its locomotor stimulant and interoceptive discriminative-stimulus effects were investigated using dopamine D(4) receptor knockout (DA D(4)R KO) and wild-type (WT) mice. METHODS: The mice were trained in daily sessions to discriminate IP injections of saline from cocaine (10 mg/kg). Responses on one of two response keys intermittently produced a food pellet; one response was reinforced in sessions following cocaine injection (10 mg/kg), and the other response was reinforced in sessions following saline injection. Each 20th response produced a food pellet (fixed-ratio, or FR20 schedule of reinforcement). The dose-effects of cocaine and its interaction with the D(2)-like antagonist, raclopride, were assessed. Horizontal locomotor activity was also assessed in each genotype. RESULTS: As previously shown), cocaine was a more potent stimulant of locomotor activity in the DA D(4)R KO mice compared to WT littermate mice. In addition, cocaine was more potent in producing discriminative-stimulus effects in DA D(4)R KO mice (ED(50) value=0.50 mg/kg) compared to their WT littermates (ED(50) value=2.6 mg/kg). Raclopride shifted the cocaine dose-effect curve in both DA D(4)R KO and WT mice, though the shift was greater for the DA D(4)R KO mice. CONCLUSIONS: The present results on the stimulation of activity and interoceptive/subjective effects of cocaine are consistent with the previously reported disregulation of dopamine synthesis in DA D(4)R KO mice, and further suggest a role of the DA D(4)R in vulnerability to stimulant abuse.


Assuntos
Cocaína/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Atividade Motora/efeitos dos fármacos , Receptores Dopaminérgicos/genética , Animais , Cocaína/administração & dosagem , Antagonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Genótipo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Knockout , Racloprida/farmacologia , Receptores Dopaminérgicos/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA