Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502514

RESUMO

In this study, we employed the copolymer poly(methyl vinyl ether-alt-maleic monoethyl ester) (PMVEMA-Es) and three fluorene-based cationic conjugated polyelectrolytes to develop fluorescent nanoparticles with emission in the blue, green and red spectral regions. The size, Zeta Potential, polydispersity, morphology, time-stability and fluorescent properties of these nanoparticles were characterized, as well as the nature of the interaction between both PMVEMA-Es and fluorescent polyelectrolytes. Because PMVEMA-Es contains a carboxylic acid group in its structure, the effects of pH and ionic strength on the nanoparticles were also evaluated, finding that the size is responsive to pH and ionic strength, largely swelling at physiological pH and returning to their initial size at acidic pHs. Thus, the developed fluorescent nanoparticles can be categorized as pH-sensitive fluorescent nanogels, since they possess the properties of both pH-responsive hydrogels and nanoparticulate systems. Doxorubicin (DOX) was used as a model drug to show the capacity of the blue-emitting nanogels to hold drugs in acidic media and release them at physiological pH, from changes in the fluorescence properties of both nanoparticles and DOX. In addition, preliminary studies by super-resolution confocal microscopy were performed, regarding their potential use as image probes.


Assuntos
Portadores de Fármacos/síntese química , Fluorenos/química , Anidridos Maleicos/química , Polivinil/química , Antibióticos Antineoplásicos/farmacologia , Cor , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Ésteres/química , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Concentração de Íons de Hidrogênio , Éteres Metílicos/química , Nanogéis/química , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Compostos de Vinila/química
2.
Biomolecules ; 10(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659914

RESUMO

The interaction of temozolomide (TMZ) (the main chemotherapeutic agent for brain tumors) with blood components has not been studied at the molecular level to date, even though such information is essential in the design of dosage forms for optimal therapy. This work explores the binding of TMZ to human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP), as well as to blood cell-mimicking membrane systems. Absorption and fluorescence experiments with model membranes indicate that TMZ does not penetrate into the lipid bilayer, but binds to the membrane surface with very low affinity. Fluorescence experiments performed with the plasma proteins suggest that in human plasma, most of the bound TMZ is attached to HSA rather than to AGP. This interaction is moderate and likely mediated by hydrogen-bonding and hydrophobic forces, which increase the hydrolytic stability of the drug. These experiments are supported by docking and molecular dynamics simulations, which reveal that TMZ is mainly inserted in the subdomain IIA of HSA, establishing π-stacking interactions with the tryptophan residue. Considering the overexpression of albumin receptors in tumor cells, our results propose that part of the administered TMZ may reach its target bound to plasma albumin and suggest that HSA-based nanocarriers are suitable candidates for designing biomimetic delivery systems that selectively transport TMZ to tumor cells.


Assuntos
Glicoproteínas/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Temozolomida/farmacologia , Sítios de Ligação , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Dicroísmo Circular , Glicoproteínas/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Temozolomida/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA