Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 24(6): e202300006, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602436

RESUMO

Nutlin-3a is a reversible inhibitor of the p53/MDM2 interaction. We have synthesized the derivative Nutlin-3a-aa bearing an additional exocyclic methylene group in the piperazinone moiety. Nutlin-3a-aa is more active than Nutlin-3a against purified wild-type MDM2, and is more effective at increasing p53 levels and releasing transcription of p53 target genes from MDM2-induced repression. X-ray analysis of wild-type MDM2-bound Nutlin-3a-aa indicated that the orientation of its modified piperazinone ring was altered in comparison to the piperazinone ring of MDM2-bound Nutlin-3a, with the exocyclic methylene group of Nutlin-3a-aa pointing away from the protein surface. Our data point to the introduction of exocyclic methylene groups as a useful approach by which to tailor the conformation of bioactive molecules for improved biological activity.


Assuntos
Antineoplásicos , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , Antineoplásicos/farmacologia , Imidazóis/farmacologia , Imidazóis/metabolismo , Linhagem Celular Tumoral , Apoptose
2.
Chemistry ; 26(1): 148-154, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31503360

RESUMO

We present a new approach for the identification of inhibitors of phosphorylation-dependent protein-protein interaction domains, in which phenolic fragments are adapted by in silico O-phosphorylation before docking-based screening. From a database of 10 369 180 compounds, we identified 85 021 natural product-derived phenolic fragments, which were virtually O-phosphorylated and screened for in silico binding to the STAT3 SH2 domain. Nine screening hits were then synthesized, eight of which showed a degree of in vitro inhibition of STAT3. After analysis of its selectivity profile, the most potent inhibitor was then developed to Stafia-1, the first small molecule shown to preferentially inhibit the STAT family member STAT5a over the close homologue STAT5b. A phosphonate prodrug based on Stafia-1 inhibited STAT5a with selectivity over STAT5b in human leukemia cells, providing the first demonstration of selective in vitro and intracellular inhibition of STAT5a by a small-molecule inhibitor.


Assuntos
Organofosfonatos/química , Fator de Transcrição STAT5/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Sítios de Ligação , Produtos Biológicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Organofosfonatos/metabolismo , Organofosfonatos/farmacologia , Fosforilação , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Fator de Transcrição STAT5/metabolismo , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo , Domínios de Homologia de src
3.
Chem Commun (Camb) ; 55(95): 14351-14354, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31720601

RESUMO

We present the first application of hydrophobic tagging to a non-covalent inhibitor of protein-protein interactions. Nutlin-3a-HT, created by fusing the hydrophobic tag HyT13 to the MDM2-p53 interaction inhibitor Nutlin-3a, prevented cellular accumulation of MDM2 upon p53 reactivation, and had a stronger effect on cell viability and the induction of apoptosis than Nutlin-3a.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Imidazóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Imidazóis/química , Estrutura Molecular , Piperazinas/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/química , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/química
4.
ACS Chem Biol ; 14(4): 796-805, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30835430

RESUMO

STAT family proteins are important mediators of cell signaling and represent therapeutic targets for the treatment of human diseases. Most STAT inhibitors target the protein-protein interaction domain, the SH2 domain, but specificity for a single STAT protein is often limited. Recently, we developed catechol bisphosphates as the first inhibitors of STAT5b demonstrated to exhibit a high degree of selectivity over the close homologue STAT5a. Here, we show that the amino acid in position 566 of the linker domain, not the SH2 domain, is the main determinant of specificity. Arg566 in wild-type STAT5b favors tight binding of catechol bisphosphates, while Trp566 in wild-type STAT5a does not. Amino acid 566 also determines the affinity for a tyrosine-phosphorylated peptide derived from the EPO receptor for STAT5a and STAT5b, demonstrating the functional relevance of the STAT5 linker domain for the adjacent SH2 domain. These results provide the first demonstration that a residue in the linker domain can determine the affinity of nonpeptidic small-molecule inhibitors for the SH2 domain of STAT proteins. We propose targeting the interface between the SH2 domain and linker domain as a novel design approach for the development of potent and selective STAT inhibitors. In addition, our data suggest that the linker domain could contribute to the enigmatically divergent biological functions of the two STAT5 proteins.


Assuntos
Catecóis/química , Catecóis/metabolismo , Domínios e Motivos de Interação entre Proteínas , Fator de Transcrição STAT5 , Proteínas Supressoras de Tumor , Domínios de Homologia de src , Sítios de Ligação , Humanos , Ligação Proteica , Fator de Transcrição STAT5/química , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
5.
Org Biomol Chem ; 17(12): 3113-3117, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30848278
6.
Angew Chem Int Ed Engl ; 57(52): 17043-17047, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30351497

RESUMO

Hydrophobic tagging (HT) of bioactive compounds can induce target degradation via the proteasomal pathway. The first application of hydrophobic tagging to an existing inhibitor of protein-protein interactions is now presented. We developed Poloxin-2HT by fusing an adamantyl tag to Poloxin-2, an inhibitor of the polo-box domain of the protein kinase Plk1, which is a target for tumor therapy. Poloxin-2HT selectively reduced the protein levels of Plk1 in HeLa cells and had a significantly stronger effect on cell viability and the induction of apoptosis than the untagged PBD inhibitor Poloxin-2. The change in cellular phenotype associated with the addition of the hydrophobic tag to Poloxin-2 demonstrated that Poloxin-2HT targets Plk1 in living cells. Our data validate hydrophobic tagging of selective inhibitors of protein-protein interactions as a novel strategy to target and destroy disease-relevant proteins.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Domínios Proteicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade , Quinase 1 Polo-Like
7.
Chemistry ; 24(52): 13762-13766, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29917279

RESUMO

Strain-promoted azide-alkyne cycloadditions (SPAAC) have proven extremely useful for labeling of biomolecules, but typically produce isomeric mixtures. This is not appropriate for the formation of bioactive molecules in living cells. Here, the first use of SPAAC for the isomer-free synthesis of a bioactive molecule is reported both in vitro and inside cultured cells. We developed the symmetrical cyclooctyne SYPCO and used it for the generation of a chemically uniform triazole inhibitor of protein-protein interactions mediated by Bcl-xL via isomer-free SPAAC (iSPAAC). Tumor cells treated with the reactants of the iSPAAC reaction contained higher concentrations of triazole, and displayed higher apoptosis levels, than cells treated with pre-synthesized triazole. We envision iSPAAC as a broadly applicable method for modulating intracellular targets with organic molecules with molecular weights prohibitively large for cellular uptake, via smaller and thus more cell-permeable components.


Assuntos
Antineoplásicos/síntese química , Triazóis/síntese química , Proteína bcl-X/antagonistas & inibidores , Alcinos/química , Alcinos/farmacologia , Antineoplásicos/farmacologia , Apoptose , Azidas/química , Azidas/farmacologia , Reação de Cicloadição , Humanos , Isomerismo , Células K562 , Cinética , Simulação de Acoplamento Molecular , Peso Molecular , Ligação Proteica , Triazóis/farmacologia
8.
Sci Rep ; 7(1): 17390, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234062

RESUMO

Inhibition of protein-protein interactions by small molecules offers tremendous opportunities for basic research and drug development. One of the fundamental challenges of this research field is the broad lack of available lead structures from nature. Here, we demonstrate that modifications of a chromone-based inhibitor of the Src homology 2 (SH2) domain of the transcription factor STAT5 confer inhibitory activity against STAT3. The binding mode of the most potent STAT3 inhibitor Erasin was analyzed by the investigation of structure-activity relationships, which was facilitated by chemical synthesis and biochemical activity analysis, in combination with molecular docking studies. Erasin inhibits tyrosine phosphorylation of STAT3 with selectivity over STAT5 and STAT1 in cell-based assays, and increases the apoptotic rate of cultured NSCLC cells in a STAT3-dependent manner. This ability of Erasin also extends to HCC-827 cells with acquired resistance against Erlotinib, a clinically used inhibitor of the EGF receptor. Our work validates chromone-based acylhydrazones as privileged structures for antagonizing STAT SH2 domains, and demonstrates that apoptosis can be induced in NSCLC cells with acquired Erlotinib resistance by direct inhibition of STAT3.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cromonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Linhagem Celular Tumoral , Cromonas/uso terapêutico , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatologia , Simulação de Acoplamento Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT1/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/antagonistas & inibidores , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/antagonistas & inibidores , Domínios de Homologia de src
9.
Front Immunol ; 8: 609, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611773

RESUMO

Monocytes enter sites of microbial or sterile inflammation as the first line of defense of the immune system and initiate pro-inflammatory effector mechanisms. We show that activation with bacterial lipopolysaccharide (LPS) induces them to undergo a metabolic shift toward aerobic glycolysis, similar to the Warburg effect observed in cancer cells. At sites of inflammation, however, glucose concentrations are often drastically decreased, which prompted us to study monocyte function under conditions of glucose deprivation and abrogated Warburg effect. Experiments using the Seahorse Extracellular Flux Analyzer revealed that limited glucose supply shifts monocyte metabolism toward oxidative phosphorylation, fueled largely by fatty acid oxidation at the expense of lipid droplets. While this metabolic state appears to provide sufficient energy to sustain functional properties like cytokine secretion, migration, and phagocytosis, it cannot prevent a rise in the AMP/ATP ratio and a decreased respiratory burst. The molecular trigger mediating the metabolic shift and the functional consequences is activation of AMP-activated protein kinase (AMPK). Taken together, our results indicate that monocytes are sufficiently metabolically flexible to perform pro-inflammatory functions at sites of inflammation despite glucose deprivation and inhibition of the LPS-induced Warburg effect. AMPK seems to play a pivotal role in orchestrating these processes during glucose deprivation in monocytes.

10.
Sci Rep ; 7(1): 819, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28400581

RESUMO

The transcription factor STAT5b is a target for tumour therapy. We recently reported catechol bisphosphate and derivatives such as Stafib-1 as the first selective inhibitors of the STAT5b SH2 domain. Here, we demonstrate STAT5b binding of catechol bisphosphate by solid-state nuclear magnetic resonance, and report on rational optimization of Stafib-1 (Ki = 44 nM) to Stafib-2 (Ki = 9 nM). The binding site of Stafib-2 was validated using combined isothermal titration calorimetry (ITC) and protein point mutant analysis, representing the first time that functional comparison of wild-type versus mutant protein by ITC has been used to characterize the binding site of a small-molecule ligand of a STAT protein with amino acid resolution. The prodrug Pomstafib-2 selectively inhibits tyrosine phosphorylation of STAT5b in human leukaemia cells and induces apoptosis in a STAT5-dependent manner. We propose Pomstafib-2, which currently represents the most active, selective inhibitor of STAT5b activation available, as a chemical tool for addressing the fundamental question of which roles the different STAT5 proteins play in various cell processes.


Assuntos
Antineoplásicos/farmacologia , Catecóis/farmacologia , Fator de Transcrição STAT5/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Catecóis/síntese química , Catecóis/química , Linhagem Celular Tumoral , Humanos , Simulação de Acoplamento Molecular , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Relação Quantitativa Estrutura-Atividade , Fator de Transcrição STAT5/química , Fator de Transcrição STAT5/metabolismo , Domínios de Homologia de src
11.
Adv Healthc Mater ; 5(15): 1861-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27125887

RESUMO

Engineering interfaces of distinct extracellular compartments mimicking native tissues are key for in-depth in vitro studies on developmental and disease processes in biology and medicine. Sharp interfaces of extracellular matrices are constructed based on fibrillar collagen I networks with a multiparameter control of topology, mechanics, and composition, and their distinct impact on triggering the directionality of cancer cell migration is demonstrated.


Assuntos
Materiais Biomiméticos/química , Movimento Celular , Colágeno Tipo I/química , Matriz Extracelular/química , Linhagem Celular Tumoral , Feminino , Humanos
12.
ACS Chem Biol ; 10(12): 2884-90, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26469307

RESUMO

Design approaches for inhibitors of protein-protein interactions are rare, but highly sought after. Here, we report that O-phosphorylation of simple derivatives of the natural products dihydrocapsaicin and N-vanillylnonanamide leads to inhibitors of the SH2 domain of the transcription factor STAT5b. The most potent molecule is obtained from dihydrocapsaicin in only three synthetic steps. It has submicromolar affinity for the SH2 domain of STAT5b (Ki = 0.34 µM), while displaying 35-fold selectivity over the highly homologous STAT5a (Ki = 13.0 µM). The corresponding pivaloyloxymethyl ester inhibits STAT5b with selectivity over STAT5a in human tumor cells. Importantly, it inhibits cell viability and induces apoptosis in human tumor cells in a STAT5-dependent manner. Our data validate O-phosphorylation of appropriately preselected natural products or natural product derivatives as a semirational design approach for small molecules that selectively inhibit phosphorylation-dependent protein-protein interaction domains in cultured human tumor cells.


Assuntos
Capsaicina/química , Capsaicina/farmacologia , Desenho de Fármacos , Fator de Transcrição STAT5/antagonistas & inibidores , Sítios de Ligação , Western Blotting , Humanos , Concentração Inibidora 50 , Células K562 , Estrutura Molecular , Fosforilação , Ligação Proteica/efeitos dos fármacos , Proteínas/química , Fator de Transcrição STAT5/química
13.
Biomaterials ; 52: 367-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818443

RESUMO

The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties.


Assuntos
Biomimética , Colágeno Tipo I/química , Invasividade Neoplásica , Neoplasias/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Coloides/química , Elasticidade , Matriz Extracelular/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Microscopia Confocal , Metástase Neoplásica , Fenótipo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA