Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0129824, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235243

RESUMO

The symbiosis between Vibrio fischeri and the Hawaiian bobtail squid, Euprymna scolopes, is a tractable and well-studied model of bacteria-animal mutualism. Here, we developed a method to transiently colonize E. scolopes using D-alanine (D-ala) auxotrophy of the symbiont, controlling the persistence of viable infection by supplying or withholding D-ala. We generated alanine racemase (alr) mutants of V. fischeri that lack avenues for mutational suppression of auxotrophy or reversion to prototrophy. Surprisingly, an ∆alr mutant did not require D-ala to grow in a minimal medium, a phenomenon requiring metC, which encodes cystathionine ß-lyase. Likewise, overexpression of metC suppressed D-ala auxotrophy in a rich medium. To block potential mechanisms of suppression, we combined the ∆alr mutation with deletions of metC and/or bsrF, which encodes a broad-spectrum racemase and investigated the suppression rates of four D-ala auxotrophic strains. We then focused on ∆alr ∆bsrF mutant MC13, which has a suppression rate of <10-9. When D-ala was removed from a growing culture of MC13, cells rounded and lysed within 40 minutes. Transient colonization of E. scolopes was achieved by inoculating squid in seawater containing MC13 and D-ala, and then transferring the squid into water lacking D-ala, which resulted in loss of viable symbionts within hours. Interestingly, the symbionts within crypt 3 persisted longer than those of crypt 1, suggesting a difference in bacterial growth rate in distinct crypt environments. Our study highlights a new approach for inducing transient colonization and provides insight into the biogeography of the E. scolopes light organ.IMPORTANCEThe importance of this study is multi-faceted, providing a valuable methodological tool and insight into the biology of the symbiosis between Vibrio fischeri and Euprymna scolopes. First, the study sheds light on the critical role of D-ala for bacterial growth, and the underpinnings of D-ala synthesis. Our observations that metC obviates the need for D-ala supplementation of an alr mutant in minimal medium and that MetC-dependent growth correlates with D-ala in peptidoglycan, corroborate and extend previous findings in Escherichia coli regarding a role of MetC in D-ala production. Second, our isolation of robust D-ala auxotrophs led us to a novel method for studying the squid-Vibrio symbiosis, allowing for transient colonization without the use of antibiotics, and revealed intriguing differences in symbiont growth parameters in distinct light organ crypts. This work and the methodology developed will contribute to our understanding of the persistence and dynamics of V. fischeri within its host.

3.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127462

RESUMO

The luminous marine Gram-negative bacterium Vibrio (Aliivibrio) fischeri is the natural light organ symbiont of several squid species, including the Hawaiian bobtail squid, Euprymna scolopes, and the Japanese bobtail squid, Euprymna morsei Work with E. scolopes has shown how the bacteria establish their niche in the light organ of the newly hatched host. Two types of V. fischeri strains have been distinguished based upon their behavior in cocolonization competition assays in juvenile E. scolopes, i.e., (i) niche-sharing or (ii) niche-dominant behavior. This study aimed to determine whether these behaviors are observed with other V. fischeri strains or whether they are specific to those isolated from E. scolopes light organs. Cocolonization competition assays between V. fischeri strains isolated from the congeneric squid E. morsei or from other marine animals revealed the same sharing or dominant behaviors. In addition, whole-genome sequencing of these strains showed that the dominant behavior is polyphyletic and not associated with the presence or absence of a single gene or genes. Comparative genomics of 44 squid light organ isolates from around the globe led to the identification of symbiosis-specific candidates in the genomes of these strains. Colonization assays using genetic derivatives with deletions of these candidates established the importance of two such genes in colonization. This study has allowed us to expand the concept of distinct colonization behaviors to strains isolated from a number of squid and fish hosts.IMPORTANCE There is an increasing recognition of the importance of strain differences in the ecology of a symbiotic bacterial species and, in particular, how these differences underlie crucial interactions with their host. Nevertheless, little is known about the genetic bases for these differences, how they manifest themselves in specific behaviors, and their distribution among symbionts of different host species. In this study, we sequenced the genomes of Vibrio fischeri isolated from the tissues of squids and fishes and applied comparative genomics approaches to look for patterns between symbiont lineages and host colonization behavior. In addition, we identified the only two genes that were exclusively present in all V. fischeri strains isolated from the light organs of sepiolid squid species. Mutational studies of these genes indicated that they both played a role in colonization of the squid light organ, emphasizing the value of applying a comparative genomics approach in the study of symbioses.


Assuntos
Aliivibrio fischeri/fisiologia , Genoma Bacteriano , Genômica , Simbiose , Infecções por Aliivibrio/veterinária , Aliivibrio fischeri/classificação , Animais , Decapodiformes/microbiologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Genômica/métodos , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Filogeografia , Virulência
4.
J Morphol ; 267(5): 555-68, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16429442

RESUMO

In the hours to days following hatching, the Hawaiian bobtail squid, Euprymna scolopes, obtains its light-emitting symbiont, Vibrio fischeri, from the surrounding environment and propagates the bacteria in the epithelial crypts of a specialized light organ. Three-dimensional analyses using confocal microscopy revealed that each of the three crypts on either side of the juvenile light organ is composed of four morphological regions. Progressing from the lateral pore to the medial blind end of each crypt, the regions consist of 1) a duct, 2) an antechamber, 3) a bottleneck, and 4) a deep region. Only the deep region houses a persistent bacterial population, whereas the duct, antechamber, and bottleneck serve as conduits through which the bacteria enter during initial colonization and exit during diel venting, a behavior in which approximately 90% of the symbionts are expelled each dawn. Our data suggest that, like the duct, the antechamber and bottleneck may function to promote and maintain the specificity of the symbiosis. Pronounced structural and functional differences among the deep regions of the three crypts, along with previously reported characterizations of embryogenesis, suggest a continued developmental progression in the first few days after hatching. Taken together, the results of this study reveal a high degree of complexity in the morphology of the crypts, as well as in the extent to which the three crypts and their constituent regions differ in function during the early stages of the symbiosis.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/citologia , Decapodiformes/microbiologia , Sistema Digestório/citologia , Sistema Digestório/microbiologia , Simbiose , Animais , Decapodiformes/anatomia & histologia , Sistema Digestório/anatomia & histologia , Células Epiteliais/citologia , Microscopia Confocal
5.
Am J Med Sci ; 323(5): 285-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12018675

RESUMO

We report the case of a 27-year-old woman who presented with palpitations, hyperemesis, and weight loss. The patient was found to have laboratory values consistent with hyperthyroidism. A serum pregnancy test was positive for an estimated 8-week gestation. After an ultrasound diagnosis of a molar pregnancy, the patient underwent a uterine evacuation with subsequent resolution of her hyperthyroid status. We provide herein the details of this rarely documented presentation of hyperthyroidism in the setting of gestational trophoblastic disease.


Assuntos
Mola Hidatiforme/complicações , Hipertireoidismo/etiologia , Adulto , Gonadotropina Coriônica Humana Subunidade beta/sangue , Gonadotropina Coriônica Humana Subunidade beta/fisiologia , Feminino , Humanos , Mola Hidatiforme/sangue , Gravidez , Tireotropina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA