Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271492

RESUMO

Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk, and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This "dock II" domain resembles a truncated HMG box incapable of DNA binding which may serve as a downstream transcription factor-binding platform in metazoans. Biochemical analysis, in situ modelling, and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG box domain-containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble.


Assuntos
RNA Polimerase I , Precursores de RNA , Humanos , Animais , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , DNA
2.
Nat Commun ; 13(1): 838, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149681

RESUMO

The proteasome recognizes ubiquitinated proteins and can also edit ubiquitin marks, allowing substrates to be rejected based on ubiquitin chain topology. In yeast, editing is mediated by deubiquitinating enzyme Ubp6. The proteasome activates Ubp6, whereas Ubp6 inhibits the proteasome through deubiquitination and a noncatalytic effect. Here, we report cryo-EM structures of the proteasome bound to Ubp6, based on which we identify mutants in Ubp6 and proteasome subunit Rpt1 that abrogate Ubp6 activation. The Ubp6 mutations define a conserved region that we term the ILR element. The ILR is found within the BL1 loop, which obstructs the catalytic groove in free Ubp6. Rpt1-ILR interaction opens the groove by rearranging not only BL1 but also a previously undescribed network of three interconnected active-site-blocking loops. Ubp6 activation and noncatalytic proteasome inhibition are linked in that they are eliminated by the same mutations. Ubp6 and ubiquitin together drive proteasomes into a unique conformation associated with proteasome inhibition. Thus, a multicomponent allosteric switch exerts simultaneous control over both Ubp6 and the proteasome.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Citoplasma , Endopeptidases/genética , Complexo de Endopeptidases do Proteassoma/genética , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo
3.
Chem Sci ; 12(23): 8178-8189, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34194708

RESUMO

Oncogenic mutated Ras is a key player in cancer, but despite intense and expensive approaches its catalytic center seems undruggable. The Ras dimer interface is a possible alternative drug target. Dimerization at the membrane affects cell growth signal transduction. In vivo studies indicate that preventing dimerization of oncogenic mutated Ras inhibits uncontrolled cell growth. Conventional computational drug-screening approaches require a precise atomic dimer model as input to successfully access drug candidates. However, the proposed dimer structural models are controversial. Here, we provide a clear-cut experimentally validated N-Ras dimer structural model. We incorporated unnatural amino acids into Ras to enable the binding of labels at multiple positions via click chemistry. This labeling allowed the determination of multiple distances of the membrane-bound Ras-dimer measured by fluorescence and electron paramagnetic resonance spectroscopy. In combination with protein-protein docking and biomolecular simulations, we identified key residues for dimerization. Site-directed mutations of these residues prevent dimer formation in our experiments, proving our dimer model to be correct. The presented dimer structure enables computational drug-screening studies exploiting the Ras dimer interface as an alternative drug target.

4.
Biophys J ; 119(2): 349-359, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32579965

RESUMO

Amyloid-ß (Aß) is a macromolecular structure of great interest because its misfolding and aggregation, along with changes in the secondary structure, have been correlated with its toxicity in various neurodegenerative diseases. Small drug-like molecules can modulate the amyloid secondary structure and therefore have raised significant interest in applications to active and passive therapies targeting amyloids. In this study, we investigate the interactions of epigallocatechin-3-gallate (EGCG), found in green tea, with Aß polypeptides, using a combination of in vitro immuno-infrared sensor measurements, docking, molecular dynamics simulations, and ab initio calculations. We find that the interactions of EGCG are dominated by only a few residues in the fibrils, including hydrophobic π-π interactions with aromatic rings of side chains and hydrophilic interactions with the backbone of Aß, as confirmed by extended (1-µs-long) molecular dynamics simulations. Immuno-infrared sensor data are consistent with degradation of Aß fibril induced by EGCG and inhibition of Aß fibril and oligomer formation, as manifested by the recovery of the amide-I band of monomeric Aß, which is red-shifted by 26 cm-1 when compared to the amide-I band of the fibrillar form. The shift is rationalized by computations of the infrared spectra of Aß42 model structures, suggesting that the conformational change involves interchain hydrogen bonds in the amyloid fibrils that are broken upon binding of EGCG.


Assuntos
Peptídeos beta-Amiloides , Catequina , Amiloide , Catequina/análogos & derivados , Fragmentos de Peptídeos , Estrutura Secundária de Proteína
5.
J Am Chem Soc ; 141(27): 10684-10701, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199130

RESUMO

GTP hydrolysis is a biologically crucial reaction, being involved in regulating almost all cellular processes. As a result, the enzymes that catalyze this reaction are among the most important drug targets. Despite their vital importance and decades of substantial research effort, the fundamental mechanism of enzyme-catalyzed GTP hydrolysis by GTPases remains highly controversial. Specifically, how do these regulatory proteins hydrolyze GTP without an obvious general base in the active site to activate the water molecule for nucleophilic attack? To answer this question, we perform empirical valence bond simulations of GTPase-catalyzed GTP hydrolysis, comparing solvent- and substrate-assisted pathways in three distinct GTPases, Ras, Rab, and the Gαi subunit of a heterotrimeric G-protein, both in the presence and in the absence of the corresponding GTPase activating proteins. Our results demonstrate that a general base is not needed in the active site, as the preferred mechanism for GTP hydrolysis is a conserved solvent-assisted pathway. This pathway involves the rate-limiting nucleophilic attack of a water molecule, leading to a short-lived intermediate that tautomerizes to form H2PO4- and GDP as the final products. Our fundamental biochemical insight into the enzymatic regulation of GTP hydrolysis not only resolves a decades-old mechanistic controversy but also has high relevance for drug discovery efforts. That is, revisiting the role of oncogenic mutants with respect to our mechanistic findings would pave the way for a new starting point to discover drugs for (so far) "undruggable" GTPases like Ras.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Animais , Domínio Catalítico , Ativação Enzimática , GTP Fosfo-Hidrolases/química , Humanos , Hidrólise , Modelos Moleculares
6.
Proc Natl Acad Sci U S A ; 116(2): 534-539, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30559193

RESUMO

Proteasomes occur in all three domains of life, and are the principal molecular machines for the regulated degradation of intracellular proteins. They play key roles in the maintenance of protein homeostasis, and control vital cellular processes. While the eukaryotic 26S proteasome is extensively characterized, its putative evolutionary precursor, the archaeal proteasome, remains poorly understood. The primordial archaeal proteasome consists of a 20S proteolytic core particle (CP), and an AAA-ATPase module. This minimal complex degrades protein unassisted by non-ATPase subunits that are present in a 26S proteasome regulatory particle (RP). Using cryo-EM single-particle analysis, we determined structures of the archaeal CP in complex with the AAA-ATPase PAN (proteasome-activating nucleotidase). Five conformational states were identified, elucidating the functional cycle of PAN, and its interaction with the CP. Coexisting nucleotide states, and correlated intersubunit signaling features, coordinate rotation of the PAN-ATPase staircase, and allosterically regulate N-domain motions and CP gate opening. These findings reveal the structural basis for a sequential around-the-ring ATPase cycle, which is likely conserved in AAA-ATPases.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Proteínas Arqueais/ultraestrutura , Archaeoglobus fulgidus/enzimologia , Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma/ultraestrutura
7.
Cell Rep ; 24(5): 1301-1315.e5, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30067984

RESUMO

The proteasome is the central protease for intracellular protein breakdown. Coordinated binding and hydrolysis of ATP by the six proteasomal ATPase subunits induces conformational changes that drive the unfolding and translocation of substrates into the proteolytic 20S core particle for degradation. Here, we combine genetic and biochemical approaches with cryo-electron microscopy and integrative modeling to dissect the relationship between individual nucleotide binding events and proteasome conformational dynamics. We demonstrate unique impacts of ATP binding by individual ATPases on the proteasome conformational distribution and report two conformational states of the proteasome suggestive of a rotary ATP hydrolysis mechanism. These structures, coupled with functional analyses, reveal key roles for the ATPases Rpt1 and Rpt6 in gating substrate entry into the core particle. This deepened knowledge of proteasome conformational dynamics reveals key elements of intersubunit communication within the proteasome and clarifies the regulation of substrate entry into the proteolytic chamber.


Assuntos
Simulação de Dinâmica Molecular , Complexo de Endopeptidases do Proteassoma/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(6): 1305-1310, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115689

RESUMO

In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the regulated degradation of intracellular proteins. The 26S holocomplex comprises the core particle (CP), where proteolysis takes place, and one or two regulatory particles (RPs). The base of the RP is formed by a heterohexameric AAA+ ATPase module, which unfolds and translocates substrates into the CP. Applying single-particle cryo-electron microscopy (cryo-EM) and image classification to samples in the presence of different nucleotides and nucleotide analogs, we were able to observe four distinct conformational states (s1 to s4). The resolution of the four conformers allowed for the construction of atomic models of the AAA+ ATPase module as it progresses through the functional cycle. In a hitherto unobserved state (s4), the gate controlling access to the CP is open. The structures described in this study allow us to put forward a model for the 26S functional cycle driven by ATP hydrolysis.


Assuntos
Adenosina Trifosfatases/química , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Microscopia Crioeletrônica , Nucleotídeos/química , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Conformação Proteica
9.
Biophys J ; 103(7): 1585-93, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23062351

RESUMO

Ras is a central regulator of cellular signaling pathways. It is mutated in 20-30% of human tumors. To perform its function, Ras has to be bound to a membrane by a posttranslationally attached lipid anchor. Surprisingly, we identified here dimerization of membrane anchored Ras by combining attenuated total reflectance Fourier transform infrared spectroscopy, biomolecular simulations, and Förster resonance energy transfer experiments. By analyzing x-ray structural models and molecular-dynamics simulations, we propose a dimerization interface between α-helices 4 and 5 and the loop between ß2 and ß3. This seems to explain why the residues D47, E49, R135, R161, and R164 of this interface are influencing Ras signaling in cellular physiological experiments, although they are not positioned in the catalytic site. Dimerization could catalyze nanoclustering, which is well accepted for membrane-bound Ras. The interface could provide a new target for a seemingly novel type of small molecule interfering with signal transduction in oncogenic Ras mutants.


Assuntos
Fosfatidilcolinas/metabolismo , Multimerização Proteica , Proteínas ras/química , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Mutação , Estrutura Quaternária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Proteínas ras/genética , Proteínas ras/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(38): 15295-300, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949691

RESUMO

Members of the Ras superfamily regulate many cellular processes. They are down-regulated by a GTPase reaction in which GTP is cleaved into GDP and P(i) by nucleophilic attack of a water molecule. Ras proteins accelerate GTP hydrolysis by a factor of 10(5) compared to GTP in water. GTPase-activating proteins (GAPs) accelerate hydrolysis by another factor of 10(5) compared to Ras alone. Oncogenic mutations in Ras and GAPs slow GTP hydrolysis and are a factor in many cancers. Here, we elucidate in detail how this remarkable catalysis is brought about. We refined the protein-bound GTP structure and protein-induced charge shifts within GTP beyond the current resolution of X-ray structural models by combining quantum mechanics and molecular mechanics simulations with time-resolved Fourier-transform infrared spectroscopy. The simulations were validated by comparing experimental and theoretical IR difference spectra. The reactant structure of GTP is destabilized by Ras via a conformational change from a staggered to an eclipsed position of the nonbridging oxygen atoms of the γ- relative to the ß-phosphates and the further rotation of the nonbridging oxygen atoms of α- relative to the ß- and γ-phosphates by GAP. Further, the γ-phosphate becomes more positive although two of its oxygen atoms remain negative. This facilitates the nucleophilic attack by the water oxygen at the phosphate and proton transfer to the oxygen. Detailed changes in geometry and charge distribution in the ligand below the resolution of X-ray structure analysis are important for catalysis. Such high resolution appears crucial for the understanding of enzyme catalysis.


Assuntos
Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Catálise , Simulação por Computador , Humanos , Hidrólise , Ligantes , Magnésio/química , Conformação Molecular , Simulação de Dinâmica Molecular , Oxigênio/química , Fosfatos/química , Conformação Proteica , Prótons , Espectrofotometria Infravermelho/métodos , Termodinâmica , Raios X , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA