Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(7): e101607, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983241

RESUMO

Chromosome breakage in germline and somatic genomes gives rise to copy number variation (CNV) responsible for genomic disorders and tumorigenesis. DNA sequence is known to play an important role in breakage at chromosome fragile sites; however, the sequences susceptible to double-strand breaks (DSBs) underlying CNV formation are largely unknown. Here we analyze 140 germline CNV breakpoints from 116 individuals to identify DNA sequences enriched at breakpoint loci compared to 2800 simulated control regions. We find that, overall, CNV breakpoints are enriched in tandem repeats and sequences predicted to form G-quadruplexes. G-rich repeats are overrepresented at terminal deletion breakpoints, which may be important for the addition of a new telomere. Interstitial deletions and duplication breakpoints are enriched in Alu repeats that in some cases mediate non-allelic homologous recombination (NAHR) between the two sides of the rearrangement. CNV breakpoints are enriched in certain classes of repeats that may play a role in DNA secondary structure, DSB susceptibility and/or DNA replication errors.


Assuntos
Sítios Frágeis do Cromossomo/genética , Cromossomos Humanos/genética , Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Sequências de Repetição em Tandem , Cromossomos Humanos/metabolismo , Humanos
2.
PLoS Genet ; 10(1): e1004139, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497845

RESUMO

Inverted duplications are a common type of copy number variation (CNV) in germline and somatic genomes. Large duplications that include many genes can lead to both neurodevelopmental phenotypes in children and gene amplifications in tumors. There are several models for inverted duplication formation, most of which include a dicentric chromosome intermediate followed by breakage-fusion-bridge (BFB) cycles, but the mechanisms that give rise to the inverted dicentric chromosome in most inverted duplications remain unknown. Here we have combined high-resolution array CGH, custom sequence capture, next-generation sequencing, and long-range PCR to analyze the breakpoints of 50 nonrecurrent inverted duplications in patients with intellectual disability, autism, and congenital anomalies. For half of the rearrangements in our study, we sequenced at least one breakpoint junction. Sequence analysis of breakpoint junctions reveals a normal-copy disomic spacer between inverted and non-inverted copies of the duplication. Further, short inverted sequences are present at the boundary of the disomic spacer and the inverted duplication. These data support a mechanism of inverted duplication formation whereby a chromosome with a double-strand break intrastrand pairs with itself to form a "fold-back" intermediate that, after DNA replication, produces a dicentric inverted chromosome with a disomic spacer corresponding to the site of the fold-back loop. This process can lead to inverted duplications adjacent to terminal deletions, inverted duplications juxtaposed to translocations, and inverted duplication ring chromosomes.


Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA/genética , Deficiência Intelectual/genética , Duplicações Segmentares Genômicas/genética , Transtorno Autístico/patologia , Pontos de Quebra do Cromossomo , Hibridização Genômica Comparativa , Replicação do DNA/genética , Amplificação de Genes , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/patologia
3.
Proc Natl Acad Sci U S A ; 110(37): 14990-4, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980137

RESUMO

Obesity is a highly heritable condition and a risk factor for other diseases, including type 2 diabetes, cardiovascular disease, hypertension, and cancer. Recently, genomic copy number variation (CNV) has been implicated in cases of early onset obesity that may be comorbid with intellectual disability. Here, we describe a recurrent CNV that causes a syndrome associated with intellectual disability, seizures, macrocephaly, and obesity. This unbalanced chromosome translocation leads to duplication of over 100 genes on chromosome 12, including the obesity candidate gene G protein ß3 (GNB3). We generated a transgenic mouse model that carries an extra copy of GNB3, weighs significantly more than its wild-type littermates, and has excess intraabdominal fat accumulation. GNB3 is highly expressed in the brain, consistent with G-protein signaling involved in satiety and/or metabolism. These functional data connect GNB3 duplication and overexpression to elevated body mass index and provide evidence for a genetic syndrome caused by a recurrent CNV.


Assuntos
Duplicação Gênica , Proteínas Heterotriméricas de Ligação ao GTP/genética , Obesidade Infantil/genética , Adolescente , Adulto , Animais , Encéfalo/metabolismo , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 8/genética , Modelos Animais de Doenças , Feminino , Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Linhagem , Síndrome , Translocação Genética
4.
Nat Cell Biol ; 15(6): 700-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23685628

RESUMO

Mammalian somatic cells can be directly reprogrammed into induced pluripotent stem cells (iPSCs) by introducing defined sets of transcription factors. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem cells (ESCs). Human ESCs (hESCs) contain 5-hydroxymethylcytosine (5hmC), which is generated through the oxidation of 5-methylcytosine by the TET enzyme family. Here we show that 5hmC levels increase significantly during reprogramming to human iPSCs mainly owing to TET1 activation, and this hydroxymethylation change is critical for optimal epigenetic reprogramming, but does not compromise primed pluripotency. Compared with hESCs, we find that iPSCs tend to form large-scale (100 kb-1.3 Mb) aberrant reprogramming hotspots in subtelomeric regions, most of which exhibit incomplete hydroxymethylation on CG sites. Strikingly, these 5hmC aberrant hotspots largely coincide (~80%) with aberrant iPSC-ESC non-CG methylation regions. Our results suggest that TET1-mediated 5hmC modification could contribute to the epigenetic variation of iPSCs and iPSC-hESC differences.


Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/química , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Células-Tronco Embrionárias , Ativação Enzimática , Epigênese Genética , Fibroblastos , Humanos , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
PLoS Genet ; 3(2): e32, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17319749

RESUMO

Chromosome ends are known hotspots of meiotic recombination and double-strand breaks. We monitored mitotic sister chromatid exchange (SCE) in telomeres and subtelomeres and found that 17% of all SCE occurs in the terminal 0.1% of the chromosome. Telomeres and subtelomeres are significantly enriched for SCEs, exhibiting rates of SCE per basepair that are at least 1,600 and 160 times greater, respectively, than elsewhere in the genome.


Assuntos
Troca de Cromátide Irmã , Telômero/genética , Cromossomos Humanos , Humanos , Hibridização in Situ Fluorescente , Modelos Biológicos , Dados de Sequência Molecular , Células Tumorais Cultivadas
6.
Mol Cell Biol ; 23(21): 7689-97, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14560014

RESUMO

Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.


Assuntos
Anáfase/fisiologia , Centrômero/metabolismo , Cromossomos Artificiais Humanos/metabolismo , DNA Satélite/metabolismo , Não Disjunção Genética , Linhagem Celular Tumoral , Segregação de Cromossomos , Cromossomos Humanos Par 17 , Humanos , Hibridização in Situ Fluorescente , Cromossomos em Anel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA