Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Hypertension ; 79(6): 1227-1236, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430875

RESUMO

BACKGROUND: Type 1 angiotensin (AT1) receptors are expressed on immune cells, and we previously found that bone marrow-derived AT1 receptors protect against Ang (angiotensin) II-induced hypertension. CD11c is expressed on myeloid cells derived from the bone marrow, including dendritic cells (DCs) that activate T lymphocytes. Here, we examined the role of AT1 receptors on CD11c+ cells in hypertension pathogenesis. METHODS: Mice lacking the dominant murine AT1 receptor isoform, AT1a, on CD11c+ cells (dendritic cell [DC] AT1aR knockout [KO]) and wild-type (WT) littermates were subjected to Ang II-induced hypertension. Blood pressures were measured by radiotelemetry. RESULTS: DC AT1aR KO mice had exaggerated hypertensive responses to chronic Ang II infusion with enhanced renal accumulation of effector memory T cells and CD40+ DCs. CCL5 (C-C motif chemokine ligand 5) recruits T cells into injured tissues, and CCR7 (C-C motif chemokine receptor 7) facilitates DC and T cell interactions in the kidney lymph node to allow T cell activation. DCs from the hypertensive DC AT1aR KO kidneys expressed higher levels of CCL5 and CCR7. mRNA expressions for CCR7 and tumor necrosis factor-α were increased in CD4+ T cells from the renal lymph nodes of DC AT1aR KO mice. During the second week of Ang II infusion when blood pressures between groups diverged, DC AT1aR KO mice excreted less sodium than WTs. Expressions for epithelial sodium channel subunits were increased in DC AT1aR KO kidneys. CONCLUSIONS: Following activation of the renin angiotensin system, AT1aR stimulation on DCs suppresses renal DC maturation and T cell activation with consequent protection from sodium retention and blood pressure elevation.


Assuntos
Hipertensão , Receptor Tipo 1 de Angiotensina , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Células Dendríticas/metabolismo , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores CCR7/metabolismo , Sódio/metabolismo , Linfócitos T/metabolismo
3.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614138

RESUMO

A vast evolution of drug modalities has occurred over the last several decades. Novel modalities such as cell and gene therapies have proven to be efficacious for numerous clinical indications-primarily in rare disease and immune oncology. Because of this success, drug developers are heavily investing in these novel modalities. Given the complexity of these therapeutics, a variety of bioanalytical techniques are employed to fully characterize the pharmacokinetics of these therapies in clinical studies. Industry trends indicate that quantitative PCR (qPCR) and multiparameter flow cytometry are both valuable in determining the pharmacokinetics, i.e. cellular kinetics, of cell therapies. This manuscript will evaluate the pros and cons of both techniques and highlight regulatory guidance on assays for measuring cellular kinetics. Moreover, common considerations when developing these assays will be addressed.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Cinética , Citometria de Fluxo
4.
Front Immunol ; 12: 661290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995384

RESUMO

Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.


Assuntos
Colo/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Fagócitos/imunologia , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Colo/citologia , Colo/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Expressão Gênica/imunologia , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Intestino Delgado/imunologia , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Fagócitos/metabolismo , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Células Th17/metabolismo
5.
Kidney Int ; 97(1): 119-129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31685313

RESUMO

Tubulointerstitial disease in the kidney culminates in renal fibrosis that portents organ failure. Twist1, a basic helix-loop-helix protein 38 transcription factor, regulates several essential biological functions, but inappropriate Twist1 activity in the kidney epithelium can trigger kidney fibrogenesis and chronic kidney disease. By contrast, Twist1 in circulating myeloid cells may constrain inflammatory injury by attenuating cytokine generation. To dissect the effects of Twist1 in kidney tubular versus immune cells on renal inflammation following toxin-induced renal injury, we subjected mice with selective deletion of Twist1 in renal epithelial cells or macrophages to aristolochic acid-induced chronic kidney disease. Ablation of Twist1 in the distal nephron attenuated kidney damage, interstitial fibrosis, and renal inflammation after aristolochic acid exposure. However, macrophage-specific deletion of Twist1 did not impact the development of aristolochic acid-induced nephropathy. In vitro studies confirmed that Twist1 in renal tubular cells underpins their susceptibility to apoptosis and propensity to generate pro-fibrotic mediators in response to aristolochic acid. Moreover, co-culture studies revealed that Twist1 in renal epithelia augmented the recruitment and activation of pro-inflammatory CD64+ macrophages. Thus, Twist1 in the distal nephron rather than in infiltrating macrophages propagates chronic inflammation and fibrogenesis during aristolochic acid-induced nephropathy.


Assuntos
Túbulos Renais Distais/patologia , Macrófagos/imunologia , Nefrite Intersticial/imunologia , Insuficiência Renal Crônica/imunologia , Proteína 1 Relacionada a Twist/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Ácidos Aristolóquicos/toxicidade , Técnicas de Cocultura , Modelos Animais de Doenças , Células Epiteliais , Feminino , Fibrose , Técnicas de Silenciamento de Genes , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Túbulos Renais Distais/citologia , Túbulos Renais Distais/imunologia , Túbulos Renais Distais/metabolismo , Lipocalina-2/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Nefrite Intersticial/induzido quimicamente , Nefrite Intersticial/patologia , Cultura Primária de Células , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Proteína 1 Relacionada a Twist/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
6.
Am J Physiol Renal Physiol ; 318(1): F107-F116, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31736350

RESUMO

Nephrotoxic serum nephritis (NTN) models immune-mediated human glomerulonephritis and culminates in kidney inflammation and fibrosis, a process regulated by T lymphocytes. TNF-α is a key proinflammatory cytokine that contributes to diverse forms of renal injury. Therefore, we posited that TNF-α from T lymphocytes may contribute to NTN pathogenesis. Here, mice with T cell-specific deletion of TNF-α (TNF TKO) and wild-type (WT) control mice were subjected to the NTN model. At 14 days after NTN, kidney injury and fibrosis were increased in kidneys from TNF TKO mice compared with WT mice. PD1+CD4+ T cell numbers and mRNA levels of IL-17A were elevated in NTN kidneys of TNF TKO mice, suggesting that augmented local T helper 17 lymphocyte responses in the TNF TKO kidney may exaggerate renal injury and fibrosis. In turn, we found increased accumulation of neutrophils in TNF TKO kidneys during NTN. We conclude that TNF-α production in T lymphocytes mitigates NTN-induced kidney injury and fibrosis by inhibiting renal T helper 17 lymphocyte responses and infiltration of neutrophils.


Assuntos
Fibrose/metabolismo , Glomerulonefrite/metabolismo , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Fibrose/genética , Fibrose/patologia , Glomerulonefrite/genética , Glomerulonefrite/patologia , Interleucina-17/genética , Interleucina-17/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Linfócitos T/patologia , Fator de Necrose Tumoral alfa/genética
7.
Circ Res ; 125(12): 1055-1066, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31630621

RESUMO

RATIONALE: The ubiquitin-editing protein A20 in dendritic cells (DCs) suppresses NF-κB (nuclear factor-κB) signaling and constrains DC-mediated T-cell stimulation, but the role of A20 in modulating the hypertensive response requires elucidation. OBJECTIVE: Here, we tested the hypothesis that A20 in CD11c-expressing myeloid cells mitigates Ang II (angiotensin II)-induced hypertension by limiting renal T-cell activation. METHODS AND RESULTS: Mice with heterozygous deletion of A20 in CD11c-expressing myeloid cells (DC ACT[Cd11c-Cre+A20flox/wt]) have spontaneous DC activation but have normal baseline blood pressures. In response to low-dose chronic Ang II infusion, DC ACT mice compared with WT (wild type) controls had an exaggerated hypertensive response and augmented proportions of CD62LloCD44hi effector memory T lymphocytes in the kidney lymph node. After 10 days of Ang II, DC ACT kidneys had increased numbers of memory effector CD8+, but not CD4+ T cells, compared with WTs. Moreover, the expressions of TNF-α (tumor necrosis factor-α) and IFN-γ (interferon-γ) were upregulated in the DC ACT renal CD8+ T cells but not CD4+ T cells. Saline challenge testing revealed enhanced renal fluid retention in the DC ACT mice. DC ACT kidneys showed augmented protein expression of γ-epithelial sodium channel and NHE3 (sodium-hydrogen antiporter 3). DC ACT mice also had greater reductions in renal blood flow following acute injections with Ang II and enhanced oxidant stress in the vasculature as evidenced by higher circulating levels of malondialdehyde compared with WT controls. To directly test whether enhanced T-cell activation in the DC ACT cohort was responsible for their exaggerated hypertensive response, we chronically infused Ang II into lymphocyte-deficient DC ACT Rag1 (recombination activating protein 1)-deficient (Rag1-/-) mice and WT (Cd11c-Cre-A20flox/wt) Rag1-/- controls. The difference in blood pressure elevation accruing from DC activation was abrogated on the Rag1-/- strain. CONCLUSIONS: Following stimulation of the renin-angiotensin system, A20 suppresses DC activation and thereby mitigates T-cell-dependent blood pressure elevation.


Assuntos
Células Dendríticas/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Células Mieloides/metabolismo , Linfócitos T/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/deficiência , Animais , Células Cultivadas , Células Dendríticas/imunologia , Hipertensão/imunologia , Hipertensão/prevenção & controle , Rim/citologia , Rim/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/imunologia , Linfócitos T/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia
8.
Kidney Int ; 96(6): 1308-1319, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585741

RESUMO

Wnt/ß-catenin signaling is essential in the pathogenesis of renal fibrosis. We previously reported inhibition of the Wnt O-acyl transferase porcupine, required for Wnt secretion, dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Here, we investigated the tissue-specific contributions of porcupine to renal fibrosis and inflammation in ureteral obstruction using mice with porcupine deletion restricted to the kidney tubular epithelium or infiltrating myeloid cells. Obstruction of the ureter induced the renal mRNA expression of porcupine and downstream targets, ß-catenin, T-cell factor, and lymphoid enhancer factor in wild type mice. Renal tubular specific deficiency of porcupine reduced the expression of collagen I and other fibrosis markers in the obstructed kidney. Moreover, kidneys from obstructed mice with tubule-specific porcupine deficiency had reduced macrophage accumulation with attenuated expression of myeloid cytokine and chemokine mRNA. In co-culture with activated macrophages, renal tubular cells from tubular-specific porcupine knockout mice had blunted induction of fibrosis mediators compared with wild type renal tubular cells. In contrast, macrophages from macrophage-specific porcupine deficient mice in co-culture with wild type renal tubular cells had markedly enhanced expression of pro-fibrotic cytokines compared to wild type macrophages. Consequently, porcupine deletion specifically within macrophages augmented renal scar formation following ureteral obstruction. Thus, our experiments suggest a benefit of interrupting Wnt secretion specifically within the kidney epithelium while preserving Wnt O-acylation in infiltrating myeloid cells during renal fibrogenesis.


Assuntos
Aciltransferases/metabolismo , Proteínas de Membrana/metabolismo , Nefroesclerose/metabolismo , Via de Sinalização Wnt , Animais , Quimiocinas/metabolismo , Feminino , Fibrose , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Nefroesclerose/etiologia , Obstrução Ureteral
9.
J Am Soc Nephrol ; 30(10): 1925-1938, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337692

RESUMO

BACKGROUND: Polarized macrophage populations can orchestrate both inflammation of the kidney and tissue repair during CKD. Proinflammatory M1 macrophages initiate kidney injury, but mechanisms through which persistent M1-dependent kidney damage culminates in fibrosis require elucidation. Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor that suppresses inflammatory signals, is an essential regulator of macrophage polarization in adipose tissues, but the effect of myeloid KLF4 on CKD progression is unknown. METHODS: We used conditional mutant mice lacking KLF4 or TNFα (KLF4's downstream effector) selectively in myeloid cells to investigate macrophage KLF4's role in modulating CKD progression in two models of CKD that feature robust macrophage accumulation, nephrotoxic serum nephritis, and unilateral ureteral obstruction. RESULTS: In these murine CKD models, KLF4 deficiency in macrophages infiltrating the kidney augmented their M1 polarization and exacerbated glomerular matrix deposition and tubular epithelial damage. During the induced injury in these models, macrophage-specific KLF4 deletion also exacerbated kidney fibrosis, with increased levels of collagen 1 and α-smooth muscle actin in the injured kidney. CD11b+Ly6Chi myeloid cells isolated from injured kidneys expressed higher levels of TNFα mRNA versus wild-type controls. In turn, mice bearing macrophage-specific deletion of TNFα exhibited decreased glomerular and tubular damage and attenuated kidney fibrosis in the models. Moreover, treatment with the TNF receptor-1 inhibitor R-7050 during nephrotoxic serum nephritis reduced damage, fibrosis, and necroptosis in wild-type mice and mice with KLF4-deficient macrophages, and abrogated the differences between the two groups in these parameters. CONCLUSIONS: These data indicate that macrophage KLF4 ameliorates CKD by mitigating TNF-dependent injury and fibrosis.


Assuntos
Nefropatias/etiologia , Rim/patologia , Fatores de Transcrição Kruppel-Like/fisiologia , Macrófagos/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Fibrose/etiologia , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Fator de Necrose Tumoral alfa/antagonistas & inibidores
10.
J Am Soc Nephrol ; 30(9): 1674-1685, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315922

RESUMO

BACKGROUND: Following an acute insult, macrophages regulate renal fibrogenesis through the release of various factors that either encourage the synthesis of extracellular matrix synthesis or the degradation of matrix via endocytosis, proteolysis, or both. However, the roles of infiltrating versus resident myeloid cells in these opposing processes require elucidation. The transcription factor Twist1 controls diverse essential cellular functions through induction of several downstream targets, including matrix metalloproteinases (MMPs). In macrophages, Twist1 can influence patterns of cytokine generation, but the role of macrophage Twist1 in renal fibrogenesis remains undefined. METHODS: To study Twist1 functions in different macrophage subsets during kidney scar formation, we used two conditional mutant mouse models in which Twist1 was selectively ablated either in infiltrating, inflammatory macrophages or in resident tissue macrophages. We assessed fibrosis-related parameters, matrix metallopeptidase 13 (MMP13, or collagen 3, which catalyzes collagen degradation), inflammatory cytokines, and other factors in these Twist1-deficient mice compared with wild-type controls after subjecting the animals to unilateral ureteral obstruction. We also treated wild-type and Twist1-deficient mice with an MMP13 inhibitor after unilateral ureteral obstruction. RESULTS: Twist1 in infiltrating inflammatory macrophages but not in resident macrophages limited kidney fibrosis after ureteral obstruction by driving extracellular matrix degradation. Moreover, deletion of Twist1 in infiltrating macrophages attenuated the expression of MMP13 in CD11b+Ly6Clo myeloid cells. Inhibition of MMP13 abrogated the protection from renal fibrosis afforded by macrophage Twist1. CONCLUSIONS: Twist1 in infiltrating myeloid cells mitigates interstitial matrix accumulation in the injured kidney by promoting MMP13 production, which drives extracellular matrix degradation. These data highlight the complex cell-specific actions of Twist1 in the pathogenesis of kidney fibrosis.


Assuntos
Matriz Extracelular/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Rim/patologia , Macrófagos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Actinas/metabolismo , Animais , Benzofuranos/farmacologia , Receptor 1 de Quimiocina CX3C/metabolismo , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibrose , Expressão Gênica , Hidroxiprolina/metabolismo , Nefropatias/etiologia , Nefropatias/patologia , Macrófagos Peritoneais/metabolismo , Masculino , Metaloproteinase 13 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Morfolinas/farmacologia , Células Mieloides/enzimologia , Proteína 1 Relacionada a Twist/genética , Obstrução Ureteral/complicações
11.
Am J Physiol Renal Physiol ; 315(3): F682-F691, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790392

RESUMO

Acute kidney injury (AKI) is a leading cause of morbidity and mortality. Drug-induced/toxic AKI can be caused by a number of therapeutic agents. Cisplatin is an effective chemotherapeutic agent whose administration is limited by significant nephrotoxicity. Therapies to prevent cisplatin-induced AKI are lacking. Although tumor necrosis factor-α (TNF) plays a key role in the pathogenesis of cisplatin nephrotoxicity, the innate immune signaling pathways that trigger TNF generation in this context require elucidation. In this regard, sterile injury triggers the release and activation of both isoforms of interleukin(IL)-1, IL-1α and IL-1ß. In turn, stimulation of the interleukin-1 receptor (IL-1R1) by these ligands engages a proinflammatory signaling cascade that induces TNF induction. We therefore hypothesized that IL-1R1 activation exacerbates cisplatin-induced AKI by inducing TNF production, thereby augmenting inflammatory signals between kidney parenchymal cells and infiltrating myeloid cells. IL-1R1+/+ (WT) and IL-1R1-/- (KO) mice were subjected to cisplatin-induced AKI. Compared with WT mice, IL-1R1 KO mice had attenuated AKI as measured by serum creatinine and BUN, renal NGAL mRNA levels, and blinded histological analysis of kidney pathology. In the cisplatin-injured kidney, IL-1R1 KO mice had diminished levels of whole kidney TNF, and fewer Ly6G-expressing neutrophils. In addition, an unbiased machine learning analysis of intrarenal immune cells revealed a diminished number of CD11bint/CD11cint myeloid cells in IL-1R1 KO injured kidneys compared with IL-1R1 WT kidneys. Following cisplatin, IL-1R1 KO kidneys, compared with WTs, had fewer TNF-producing: macrophages, CD11bint/CD11cint cells, and neutrophils, consistent with an effect of IL-1R1 to polarize intrarenal myeloid cells toward a proinflammatory phenotype. Interruption of IL-1-dependent signaling pathways warrants further evaluation to decrease nephrotoxicity during cisplatin therapy.


Assuntos
Injúria Renal Aguda/metabolismo , Cisplatino , Rim/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/imunologia , Animais , Comunicação Celular , Separação Celular/métodos , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Mediadores da Inflamação/metabolismo , Rim/patologia , Aprendizado de Máquina , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais , Processos Estocásticos , Fator de Necrose Tumoral alfa/metabolismo
12.
J Am Soc Nephrol ; 28(5): 1350-1361, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28151411

RESUMO

Inappropriate activation of the renin-angiotensin system (RAS) exacerbates renal and vascular injury. Accordingly, treatment with global RAS antagonists attenuates cardiovascular risk and slows the progression of proteinuric kidney disease. By reducing BP, RAS inhibitors limit secondary immune activation responding to hemodynamic injury in the target organ. However, RAS activation in hematopoietic cells has immunologic effects that diverge from those of RAS stimulation in the kidney and vasculature. In preclinical studies, activating type 1 angiotensin (AT1) receptors in T lymphocytes and myeloid cells blunts the polarization of these cells toward proinflammatory phenotypes, protecting the kidney from hypertensive injury and fibrosis. These endogenous functions of immune AT1 receptors temper the pathogenic actions of renal and vascular AT1 receptors during hypertension. By counteracting the effects of AT1 receptor stimulation in the target organ, exogenous administration of AT2 receptor agonists or angiotensin 1-7 analogs may similarly limit inflammatory injury to the heart and kidney. Moreover, although angiotensin II is the classic effector molecule of the RAS, several RAS enzymes affect immune homeostasis independently of canonic angiotensin II generation. Thus, as reviewed here, multiple components of the RAS signaling cascade influence inflammatory cell phenotype and function with unpredictable and context-specific effects on innate and adaptive immunity.


Assuntos
Sistema Renina-Angiotensina/imunologia , Angiotensina I/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , Humanos , Fragmentos de Peptídeos/fisiologia , Peptidil Dipeptidase A/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Receptor Tipo 2 de Angiotensina/fisiologia
13.
Am J Pathol ; 186(11): 2846-2856, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27640148

RESUMO

Inappropriate activation of the renin angiotensin system (RAS) is a key contributor to the pathogenesis of essential hypertension. During RAS activation, infiltration of immune cells into the kidney exacerbates hypertension and renal injury. However, the mechanisms underpinning the accumulation of mononuclear cells in the kidney after RAS stimulation remain unclear. C-C motif chemokine 5 (CCL5) drives recruitment of macrophages and T lymphocytes into injured tissues, and we have found that RAS activation induces CCL5 expression in the kidney during the pathogenesis of hypertension and renal fibrosis. We therefore evaluated the contribution of CCL5 to renal damage and fibrosis in hypertensive and normotensive models of RAS stimulation. Surprisingly, during angiotensin II-induced hypertension, CCL5-deficient (knockout, KO) mice exhibited markedly augmented kidney damage, macrophage infiltration, and expression of proinflammatory macrophage cytokines compared with wild-type controls. When subjected to the normotensive unilateral ureteral obstruction model of endogenous RAS activation, CCL5 KO mice similarly developed more severe renal fibrosis and greater accumulation of macrophages in the kidney, congruent with enhanced renal expression of the macrophage chemokine CCL2. In turn, pharmacologic inhibition of CCL2 abrogated the differences between CCL5 KO and wild-type mice in kidney fibrosis and macrophage infiltration after unilateral ureteral obstruction. These data indicate that CCL5 paradoxically limits macrophage accumulation in the injured kidney during RAS activation by constraining the proinflammatory actions of CCL2.


Assuntos
Angiotensina II/imunologia , Quimiocina CCL5/metabolismo , Hipertensão/imunologia , Nefropatias/imunologia , Rim/patologia , Animais , Pressão Sanguínea , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/genética , Hipertensão Essencial , Feminino , Fibrose , Hipertensão/etiologia , Rim/imunologia , Rim/cirurgia , Nefropatias/etiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Nefrectomia , Sistema Renina-Angiotensina/imunologia , Linfócitos T/imunologia , Obstrução Ureteral
14.
Am J Physiol Renal Physiol ; 311(3): F555-61, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27279492

RESUMO

Immune cells in the kidney are implicated in the development of hypertension and renal damage in the Dahl salt-sensitive (SS) rat. Interestingly, interleukin 6 (IL-6) mRNA is 54-fold higher in T-lymphocytes isolated from the kidney compared with circulating T-lymphocytes. The present experiments assessed the role of IL-6 in the development of SS hypertension by treating rats (n = 13-14/group) with an IL-6 neutralizing antibody or normal IgG during an 11-day period of high-salt (4.0% NaCl chow) intake. The mean arterial pressure (MAP) and urine albumin excretion rates (Ualb) were not different between the groups fed low salt (0.4% NaCl). Following 11 days of drug treatment and high salt, however, the rats receiving anti-IL-6 demonstrated a 47% reduction of IL-6 in the renal medulla compared with control SS. Moreover, the increase in MAP following 11 days of high-NaCl intake was significantly attenuated in SS administered anti-IL-6 compared with the control group (138 ± 3 vs. 149 ± 3 mmHg) as was the salt-induced increase in Ualb and glomerular and tubular damage. To investigate potential mechanisms of action, a flow cytometric analysis of immune cells in the kidney (n = 8-9/group) demonstrated that the total number of monocytes and macrophages was significantly lower in the treatment vs. the control group. The total number of T- and B-lymphocytes in the kidneys was not different between groups. These studies indicate that IL-6 production may participate in the development of SS hypertension and end-organ damage by mediating increased infiltration or proliferation of macrophages into the kidney.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Interleucina-6/imunologia , Nefropatias/tratamento farmacológico , Medula Renal/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Citometria de Fluxo , Hipertensão/metabolismo , Hipertensão/patologia , Interleucina-6/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Medula Renal/metabolismo , Medula Renal/patologia , Masculino , Ratos , Ratos Endogâmicos Dahl , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
15.
Cell Metab ; 23(2): 360-8, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26712462

RESUMO

Hypertension is among the most prevalent and catastrophic chronic diseases worldwide. While the efficacy of renin angiotensin system (RAS) blockade in lowering blood pressure illustrates that the RAS is broadly activated in human hypertension, the frequent failure of RAS inhibition to prevent or reverse hypertensive organ damage highlights the need for novel therapies to combat RAS-dependent hypertension. We previously discovered elevated levels of the macrophage cytokine IL-1 in the kidney in a murine model of RAS-mediated hypertension. Here we report that IL-1 receptor (IL-1R1) deficiency or blockade limits blood pressure elevation in this model by mitigating sodium reabsorption via the NKCC2 co-transporter in the nephron. In this setting, IL-1R1 activation prevents intra-renal myeloid cells from maturing into Ly6C(+)Ly6G(-) macrophages that elaborate nitric oxide, a natriuretic hormone that suppresses NKCC2 activity. By revealing how the innate immune system regulates tubular sodium transport, these experiments should lead to new immunomodulatory anti-hypertensive therapies.


Assuntos
Néfrons/metabolismo , Receptores de Interleucina-1/metabolismo , Reabsorção Renal , Cloreto de Sódio na Dieta/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Angiotensina II , Animais , Disponibilidade Biológica , Pressão Sanguínea , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Néfrons/fisiopatologia , Óxido Nítrico/metabolismo , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Sistema Renina-Angiotensina , Transdução de Sinais
16.
Cancer Res ; 74(22): 6419-29, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172839

RESUMO

The majority of causative variants in familial breast cancer remain unknown. Of the known risk variants, most are tumor cell autonomous, and little attention has been paid yet to germline variants that may affect the tumor microenvironment. In this study, we developed a system called the Consomic Xenograft Model (CXM) to map germline variants that affect only the tumor microenvironment. In CXM, human breast cancer cells are orthotopically implanted into immunodeficient consomic strains and tumor metrics are quantified (e.g., growth, vasculogenesis, and metastasis). Because the strain backgrounds vary, whereas the malignant tumor cells do not, any observed changes in tumor progression are due to genetic differences in the nonmalignant microenvironment. Using CXM, we defined genetic variants on rat chromosome 3 that reduced relative tumor growth and hematogenous metastasis in the SS.BN3(IL2Rγ) consomic model compared with the SS(IL2Rγ) parental strain. Paradoxically, these effects occurred despite an increase in the density of tumor-associated blood vessels. In contrast, lymphatic vasculature and lymphogenous metastasis were unaffected by the SS.BN3(IL2Rγ) background. Through comparative mapping and whole-genome sequence analysis, we narrowed candidate variants on rat chromosome 3 to six genes with a priority for future analysis. Collectively, our results establish the utility of CXM to localize genetic variants affecting the tumor microenvironment that underlie differences in breast cancer risk.


Assuntos
Neoplasias da Mama/etiologia , Microambiente Tumoral , 9,10-Dimetil-1,2-benzantraceno , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Linfangiogênese , Masculino , Transplante de Neoplasias , Locos de Características Quantitativas , Ratos , Risco , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA