Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(18): 4372-4380, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37140167

RESUMO

Ultrafast H2+ and H3+ formation from ethanol is studied using pump-probe spectroscopy with an extreme ultraviolet (XUV) free-electron laser. The first pulse creates a dication, triggering H2 roaming that leads to H2+ and H3+ formation, which is disruptively probed by a second pulse. At photon energies of 28 and 32 eV, the ratio of H2+ to H3+ increases with time delay, while it is flat at a photon energy of 70 eV. The delay-dependent effect is ascribed to a competition between electron and proton transfer. High-level quantum chemistry calculations show a flat potential energy surface for H2 formation, indicating that the intermediate state may have a long lifetime. The ab initio molecular dynamics simulation confirms that, in addition to the direct emission, a small portion of H2 undergoes a roaming mechanism that leads to two competing pathways: electron transfer from H2 to C2H4O2+ and proton transfer from C2H4O2+ to H2.

2.
J Phys Chem Lett ; 11(23): 10205-10211, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33206545

RESUMO

Conformational isomerism plays a crucial role in defining the physical and chemical properties and biological activity of molecules ranging from simple organic compounds to complex biopolymers. However, it is often a significant challenge to differentiate and separate these isomers experimentally as they can easily interconvert due to their low rotational energy barrier. Here, we use the momentum correlation of fragment ions produced after inner-shell photoionization to distinguish conformational isomers of 1,2-dibromoethane (C2H4Br2). We demonstrate that the three-body breakup channel, C2H4+ + Br+ + Br+, contains signatures of both sequential and concerted breakup, which are decoupled to distinguish the geometries of two conformational isomers and to quantify their relative abundance. The sensitivity of our method to quantify these yields is established by measuring the relative abundance change with sample temperature, which agrees well with calculations. Our study paves the way for using Coulomb explosion imaging to track subtle molecular structural changes.


Assuntos
Dibrometo de Etileno/química , Teoria da Densidade Funcional , Conformação Molecular , Processos Fotoquímicos , Análise Espectral , Estereoisomerismo
3.
J Chem Phys ; 152(8): 084307, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113333

RESUMO

We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV (λ ≈ 130 pm) provided by the Linac Coherent Light Source. Diffracted photons were recorded on the Cornell-SLAC pixel array detector, and a two-dimensional diffraction pattern of the equilibrium structure of 2,5-diiodothiophene was recorded. The retrieved distance between the two iodine atoms agrees with the quantum-chemically calculated molecular structure to be within 5%. The experimental approach allows for the imaging of intrinsic molecular dynamics in the molecular frame, albeit this requires more experimental data, which should be readily available at upcoming high-repetition-rate facilities.

4.
Sci Data ; 3: 160060, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27479754

RESUMO

Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.


Assuntos
Mimiviridae , Difração de Raios X , Algoritmos , Simulação por Computador , Cristalografia por Raios X , Coleta de Dados , Elétrons , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Lasers , Modelos Teóricos , Tamanho da Partícula , Espalhamento de Radiação , Raios X
5.
Phys Rev Lett ; 114(9): 098102, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793853

RESUMO

We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.


Assuntos
Imageamento Tridimensional/métodos , Mimiviridae/ultraestrutura , Difração de Raios X/métodos , Algoritmos , Elétrons , Lasers , Difração de Raios X/instrumentação
6.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 838-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633593

RESUMO

X-ray free-electron lasers (FELs) enable crystallographic data collection using extremely bright femtosecond pulses from microscopic crystals beyond the limitations of conventional radiation damage. This diffraction-before-destruction approach requires a new crystal for each FEL shot and, since the crystals cannot be rotated during the X-ray pulse, data collection requires averaging over many different crystals and a Monte Carlo integration of the diffraction intensities, making the accurate determination of structure factors challenging. To investigate whether sufficient accuracy can be attained for the measurement of anomalous signal, a large data set was collected from lysozyme microcrystals at the newly established `multi-purpose spectroscopy/imaging instrument' of the SPring-8 Ångstrom Compact Free-Electron Laser (SACLA) at RIKEN Harima. Anomalous difference density maps calculated from these data demonstrate that serial femtosecond crystallography using a free-electron laser is sufficiently accurate to measure even the very weak anomalous signal of naturally occurring S atoms in a protein at a photon energy of 7.3 keV.


Assuntos
Cristalografia por Raios X/métodos , Lasers , Conformação Proteica , Enxofre/química , Cristalografia por Raios X/instrumentação , Cisteína/química , Modelos Moleculares , Muramidase/química
7.
Phys Rev B Condens Matter Mater Phys ; 84(21): 214111, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24089594

RESUMO

X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA