Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(6)2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326474

RESUMO

Cancer therapy is an emergent application for mRNA therapeutics. While in tumor immunotherapy, mRNA encoding for tumor-associated antigens is delivered to antigen-presenting cells in spleen and lymph nodes, other therapeutic options benefit from immediate delivery of mRNA nanomedicines directly to the tumor. However, tumor targeting of mRNA therapeutics is still a challenge, since, in addition to delivery of the cargo to the tumor, specifics of the targeted cell type as well as its interplay with the tumor microenvironment are crucial for successful intervention. This study investigated lipoplex nanoparticle-mediated mRNA delivery to spheroid cell culture models of melanoma. Insights into cell-type specific targeting, non-cell-autonomous effects, and penetration capacity in tumor and stroma cells of the mRNA lipoplex nanoparticles were obtained. It was shown that both coculture of different cell types as well as three-dimensional cell growth characteristics can modulate distribution and transfection efficiency of mRNA lipoplex formulations. The results demonstrate that three-dimensional coculture spheroids can provide a valuable surplus of information in comparison to adherent cells. Thus, they may represent in vitro models with enhanced predictivity for the in vivo activity of cancer nanotherapeutics.


Assuntos
Melanoma , Nanopartículas , Técnicas de Cocultura , Humanos , Melanoma/terapia , Nanopartículas/uso terapêutico , RNA , RNA Mensageiro/genética , Microambiente Tumoral
2.
Cells ; 10(6)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073955

RESUMO

Bone sialoprotein (BSP) has become a target in breast cancer research as it is associated with tumor progression and metastasis. The mechanisms underlying the regulation of BSP expression have been largely elusive. Given that BSP is involved in the homing of cancer cells in bone metastatic niches, we addressed regulatory effects of proteolytic cleavage and extracellular matrix components on BSP expression and distribution in cell culture models. Therefore, MDA-MB-231 human breast cancer cells were kept in 2D and 3D spheroid cultures and exposed to basement membrane extract in the presence or absence of matrix metalloproteinase 9 or the non-polar protease, dispase. Confocal imaging of immunofluorescence samples stained with different antibodies against human BSP demonstrated a strong inducing effect of basement membrane extract on anti-BSP immunofluorescence. Similarly, protease incubation led to acute upregulation of anti-BSP immunofluorescence signals, which was blocked by cycloheximide, suggesting de novo formation of BSP. In summary, our data show that extracellular matrix components play an important function in regulating BSP expression and hint at mechanisms for the formation of bone-associated metastasis in breast cancer that might involve local control of BSP levels by extracellular matrix degradation and release of growth factors.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Sialoproteína de Ligação à Integrina/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Matriz Extracelular/patologia , Feminino , Humanos
3.
Methods Mol Biol ; 2265: 173-183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704714

RESUMO

Most currently available three-dimensional melanoma models have either focused on simplicity or were optimized for physiological relevance. Accordingly, these paradigms have been either composed of malignant cells only or they were sophisticated human skin equivalents featuring multiple cell types and skin-like organization. Here, an intermediate spheroid-based assay system is presented, which uses tri-cultures of human CCD-1137Sk fibroblasts, HaCaT keratinocytes, and SK-MEL-28 melanoma cells. Being made of cell lines, these spheroids can be reliably reproduced without any special equipment using standard culture procedures, and they feature different aspects of skin and early stage melanoma. Therefore, this kind of model can be useful for lead-compound testing or addressing fundamental principles of early melanoma formation.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cocultura/métodos , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Esferoides Celulares/metabolismo , Linhagem Celular Tumoral , Docetaxel/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
4.
Cells ; 9(8)2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823793

RESUMO

Most tumors consume large amounts of glucose. Concepts to explain the mechanisms that mediate the achievement of this metabolic need have proposed a switch of the tumor mass to aerobic glycolysis. Depending on whether primarily tumor or stroma cells undergo such a commutation, the terms 'Warburg effect' or 'reverse Warburg effect' were coined to describe the underlying biological phenomena. However, current in vitro systems relying on 2-D culture, single cell-type spheroids, or basal-membrane extract (BME/Matrigel)-containing 3-D structures do not thoroughly reflect these processes. Here, we aimed to establish a BME/Matrigel-free 3-D microarray cancer model to recapitulate the metabolic interplay between cancer and stromal cells that allows mechanistic analyses and drug testing. Human HT-29 colon cancer and CCD-1137Sk fibroblast cells were used in mono- and co-cultures as 2-D monolayers, spheroids, and in a cell-chip format. Metabolic patterns were studied with immunofluorescence and confocal microscopy. In chip-based co-cultures, HT-29 cells showed facilitated 3-D growth and increased levels of hexokinase-2, TP53-induced glycolysis and apoptosis regulator (TIGAR), lactate dehydrogenase, and: translocase of outer mitochondrial membrane 20 (TOMM20), when compared with HT-29 mono-cultures. Fibroblasts co-cultured with HT-29 cells expressed higher levels of mono-carboxylate transporter 4, hexokinase-2, microtubule-associated proteins 1A/1B light chain 3, and ubiquitin-binding protein p62 than in fibroblast mono-cultures, in both 2-D cultures and chips. Tetramethylrhodamin-methylester (TMRM) live-cell imaging of chip co-cultures revealed a higher mitochondrial potential in cancer cells than in fibroblasts. The findings demonstrate a crosstalk between cancer cells and fibroblasts that affects cellular growth and metabolism. Chip-based 3-D co-cultures of cancer cells and fibroblasts mimicked features of the reverse Warburg effect.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias do Colo/metabolismo , Fibroblastos/metabolismo , Efeito Warburg em Oncologia , Adenocarcinoma/patologia , Autofagia , Técnicas de Cocultura , Neoplasias do Colo/patologia , Glucose/metabolismo , Glicólise , Células HT29 , Humanos , Potencial da Membrana Mitocondrial , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Esferoides Celulares/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral
5.
Cell Calcium ; 87: 102164, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32014795

RESUMO

Bridging the gap between two-dimensional cell cultures and complex in vivo tissues, three-dimensional cell culture models are of increasing interest in the fields of cell biology and pharmacology. However, present challenges hamper live cell imaging of three-dimensional cell cultures. These include (i) the stabilization of these structures under perfusion conditions, (ii) the recording of many z-planes at high spatio-temporal resolution, (iii) and the data analysis that ranges in complexity from whole specimens to single cells. Here, we addressed these issues for the time-lapse analysis of Ca2+ signaling in spheroids composed of human tongue-derived HTC-8 cells upon perfusion of gustatory substances. Live cell imaging setups for confocal and light sheet microscopy were developed that allow simple and robust spheroid stabilization and high-resolution microscopy with perfusion. Visualization of spheroids made of HTC-8 cells expressing the G-GECO fluorescent Ca2+ sensor revealed Ca2+ transients that showed similar kinetics but different amplitudes upon perfusion of bitter compounds Salicine and Saccharin. Dose-dependent responses to Saccharin required extracellular Ca2+. From the border towards the center of spheroids, compound-induced Ca2+ signals were progressively delayed and decreased in amplitude. Stimulation with ATP led to strong Ca2+ transients that were faster than those evoked by the bitter compounds and blockade of purinergic receptors with Suramin abutted the response to Saccharin, suggesting that ATP mediates a positive autocrine and paracrine feedback. Imaging of ATP-induced Ca2+ transients with light sheet microscopy allowed acquisition over a z-depth of 100 µm without losing spatial and temporal resolution. In summary, the presented approaches permit the study of fast cellular signaling in three-dimensional cultures upon compound perfusion.


Assuntos
Sinalização do Cálcio , Técnicas de Cultura de Células , Imageamento Tridimensional , Perfusão , Sacarina/farmacologia , Língua/citologia , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Difusão , Humanos , Rodaminas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos
6.
Nat Commun ; 10(1): 3187, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320633

RESUMO

Loss of innervation of skeletal muscle is a determinant event in several muscle diseases. Although several effectors have been identified, the pathways controlling the integrated muscle response to denervation remain largely unknown. Here, we demonstrate that PKB/Akt and mTORC1 play important roles in regulating muscle homeostasis and maintaining neuromuscular endplates after nerve injury. To allow dynamic changes in autophagy, mTORC1 activation must be tightly balanced following denervation. Acutely activating or inhibiting mTORC1 impairs autophagy regulation and alters homeostasis in denervated muscle. Importantly, PKB/Akt inhibition, conferred by sustained mTORC1 activation, abrogates denervation-induced synaptic remodeling and causes neuromuscular endplate degeneration. We establish that PKB/Akt activation promotes the nuclear import of HDAC4 and is thereby required for epigenetic changes and synaptic gene up-regulation upon denervation. Hence, our study unveils yet-unknown functions of PKB/Akt-mTORC1 signaling in the muscle response to nerve injury, with important implications for neuromuscular integrity in various pathological conditions.


Assuntos
Autofagia/fisiologia , Histona Desacetilases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Denervação Muscular , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Placa Motora/patologia , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética
7.
BMC Cancer ; 19(1): 402, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035967

RESUMO

BACKGROUND: Different 3D-cell culture approaches with varying degrees of complexity have been developed to serve as melanoma models for drug testing or mechanistic studies. While these 3D-culture initiatives are already often superior to classical 2D approaches, they are either composed of only melanoma cells or they are so complex that the behavior of individual cell types is hard to understand, and often they are difficult to establish and expensive. METHODS: This study used low-attachment based generation of spheroids composed of up to three cell types. Characterization of cells and spheroids involved cryosectioning, immunofluorescence, FACS, and quantitative analyses. Statistical evaluation used one-way ANOVA with post-hoc Tukey test or Student's t-test. RESULTS: The tri-culture model allowed to track cellular behavior in a cell-type specific manner and recapitulated different characteristics of early melanoma stages. Cells arranged into a collagen-IV rich fibroblast core, a ring of keratinocytes, and groups of highly proliferating melanoma cells on the outside. Regularly, some melanoma cells were also found to invade the fibroblast core. In the absence of melanoma cells, the keratinocyte ring stratified into central basal-like and peripheral, more differentiated cells. Conversely, keratinocyte differentiation was clearly reduced upon addition of melanoma cells. Treatment with the cytostatic drug, docetaxel, restored keratinocyte differentiation and induced apoptosis of external melanoma cells. Remaining intact external melanoma cells showed a significantly increased amount of ABCB5-immunoreactivity. CONCLUSIONS: In the present work, a novel, simple spheroid-based melanoma tri-culture model composed of fibroblasts, keratinocytes, and melanoma cells was described. This model mimicked features observed in early melanoma stages, including loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced increase of ABCB5 expression in external melanoma cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura/métodos , Esferoides Celulares/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Docetaxel/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Esferoides Celulares/citologia
8.
Front Oncol ; 9: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30805306

RESUMO

Normally, bone sialoprotein (BSP) is an important contributor to bone micro-calcification. However, it is also highly expressed in bone-metastatic malignancies, including prostate, lung, and breast cancer. In these disorders, BSP correlates with poor prognosis. Its expression in triple-negative breast cancer cells is enhanced by the transcription factor RUNX2, and both, BSP and RUNX2 are under control of IGF-1 and TGFß1. Knockdown of BSP or its inactivation by specific antibodies were found to reduce the metastatic potential of MDA-MB-231 triple-negative breast cancer cells in xenografts. While the role of BSP in bone metastasis was studied using such in vivo models, valid in vitro test systems to investigate BSP biology have been lacking since this protein is expressed at very low levels in classical 2D cell cultures and the frequently used breast cancer cell line MDA-MB-231 is difficult to grow in 3D. Here, we have developed a long-term 3D spheroid culture model using MDA-MB-231 cells in a sandwich approach using cell embedding between a non-adherent surface and basement membrane extracts. This allowed consistent growth of spheroids for more than 21 days. Also, co-culturing of MDA-MB-231 with CCD-1137Sk fibroblasts yielded stably growing spheroids, suggesting the importance of extracellular matrix (ECM) in this process. In addition, we have set up a novel and simple open source analysis tool to characterize protein expression in 2D cultures and spheroids by immunofluorescence. Using this approach in combination with Western blot analysis, the expression profile of BSP was analyzed. BSP was enriched at the rims of spheroids, both in mono- and co-cultures and its abundance in general correlated with that of TGFß1 under different conditions, including spheroid maturation, cytostatic treatment, and fibroblast co-culture. Conversely, correlation of IGF-1 and BSP was limited to mono-culture time course profiles. In conclusion, we present novel tools to study the regulation of gene expression in combination with cell proliferation and apoptosis in a long-term 3D model of breast cancer and find dynamic abundance profiles of the metastasis-relevant protein BSP and its regulators.

9.
J Neurochem ; 143(5): 569-583, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28555889

RESUMO

Inherited deficiency in ether lipids, a subgroup of phospholipids whose biosynthesis needs peroxisomes, causes the fatal human disorder rhizomelic chondrodysplasia punctata. The exact roles of ether lipids in the mammalian organism and, therefore, the molecular mechanisms underlying the disease are still largely enigmatic. Here, we used glyceronephosphate O-acyltransferase knockout (Gnpat KO) mice to study the consequences of complete inactivation of ether lipid biosynthesis and documented substantial deficits in motor performance and muscle strength of these mice. We hypothesized that, probably in addition to previously described cerebellar abnormalities and myelination defects in the peripheral nervous system, an impairment of neuromuscular transmission contributes to the compromised motor abilities. Structurally, a morphologic examination of the neuromuscular junction (NMJ) in diaphragm muscle at different developmental stages revealed aberrant axonal branching and a strongly increased area of nerve innervation in Gnpat KO mice. Post-synaptically, acetylcholine receptor (AChR) clusters colocalized with nerve terminals within a widened endplate zone. In addition, we detected atypical AChR clustering, as indicated by decreased size and number of clusters following stimulation with agrin, in vitro. The turnover of AChRs was unaffected in ether lipid-deficient mice. Electrophysiological evaluation of the adult diaphragm indicated that although evoked potentials were unaltered in Gnpat KO mice, ether lipid deficiency leads to fewer spontaneous synaptic vesicle fusion events but, conversely, an increased post-synaptic response to spontaneous vesicle exocytosis. We conclude from our findings that ether lipids are essential for proper development and function of the NMJ and may, therefore, contribute to motor performance. Read the Editorial Highlight for this article on page 463.


Assuntos
Força Muscular/fisiologia , Debilidade Muscular/fisiopatologia , Junção Neuromuscular/fisiopatologia , Fosfolipídeos/deficiência , Animais , Diafragma/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Debilidade Muscular/metabolismo , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia
10.
Proc Natl Acad Sci U S A ; 113(3): 746-50, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26733679

RESUMO

The distribution and function of sympathetic innervation in skeletal muscle have largely remained elusive. Here we demonstrate that sympathetic neurons make close contact with neuromuscular junctions and form a network in skeletal muscle that may functionally couple different targets including blood vessels, motor neurons, and muscle fibers. Direct stimulation of sympathetic neurons led to activation of muscle postsynaptic ß2-adrenoreceptor (ADRB2), cAMP production, and import of the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PPARGC1A) into myonuclei. Electrophysiological and morphological deficits of neuromuscular junctions upon sympathectomy and in myasthenic mice were rescued by sympathicomimetic treatment. In conclusion, this study identifies the neuromuscular junction as a target of the sympathetic nervous system and shows that sympathetic input is crucial for synapse maintenance and function.


Assuntos
Saúde , Homeostase , Doenças do Sistema Nervoso/patologia , Junção Neuromuscular/patologia , Sistema Nervoso Simpático/patologia , Transporte Ativo do Núcleo Celular , Animais , Técnicas Biossensoriais , Núcleo Celular/metabolismo , AMP Cíclico/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Músculo Esquelético/inervação , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenótipo , Transdução de Sinais , Simpatectomia , Sistema Nervoso Simpático/metabolismo , Fatores de Transcrição/metabolismo
11.
Cell Rep ; 8(5): 1509-21, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25176656

RESUMO

The cellular basis of age-related tissue deterioration remains largely obscure. The ability to activate compensatory mechanisms in response to environmental stress is an important factor for survival and maintenance of cellular functions. Autophagy is activated both under short and prolonged stress and is required to clear the cell of dysfunctional organelles and altered proteins. We report that specific autophagy inhibition in muscle has a major impact on neuromuscular synaptic function and, consequently, on muscle strength, ultimately affecting the lifespan of animals. Inhibition of autophagy also exacerbates aging phenotypes in muscle, such as mitochondrial dysfunction, oxidative stress, and profound weakness. Mitochondrial dysfunction and oxidative stress directly affect acto-myosin interaction and force generation but show a limited effect on stability of neuromuscular synapses. These results demonstrate that age-related deterioration of synaptic structure and function is exacerbated by defective autophagy.


Assuntos
Envelhecimento , Autofagia , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Actinas/metabolismo , Animais , Proteína 7 Relacionada à Autofagia , Linhagem Celular , Humanos , Longevidade , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Musculares/metabolismo , Força Muscular , Músculo Esquelético/fisiologia , Miosinas/metabolismo , Junção Neuromuscular/ultraestrutura , Estresse Oxidativo
12.
PLoS One ; 8(3): e57321, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23526941

RESUMO

Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.


Assuntos
Células Neuroendócrinas/metabolismo , Vesículas Secretórias/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Furina/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células PC12 , Ratos , Secretogranina II/metabolismo , Proteínas rab3 de Ligação ao GTP/genética
13.
Age (Dordr) ; 35(5): 1663-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22956146

RESUMO

Muscle atrophy is a process of muscle wasting induced under a series of catabolic stress conditions, such as denervation, disuse, cancer cachexia, heart and renal failure, AIDS, and aging. Neuromuscular junctions (NMJs), the synapses between motor neurons and muscle fibers undergo major changes in atrophying muscles, ranging from mild morphological alterations to complete disintegration. In this study, we hypothesized that remodeling of NMJs and muscle atrophy could be linked together. To test this, we examined if a major atrophy-promoting E3 ubiquitin ligase, MuRF1, is involved in the maintenance of NMJs. Immunofluorescence revealed that MuRF1 is highly enriched close to the NMJ. Affinity precipitation and in vivo imaging showed that MuRF1 interacts in endocytic structures with both, acetylcholine receptor, the primary postsynaptic protein of the NMJ, as well as with Bif-1, an autophagy- and endocytosis-regulating factor. In vivo imaging, radio labeling, and weighing approaches demonstrated that metabolic destabilization of acetylcholine receptors and muscle atrophy induced by denervation were significantly rescued in MuRF1-KO animals. Notably, interaction with Bif-1, and the rescue of AChR lifetime and muscle atrophy were specific to MuRF1 but not MuRF2. Our data demonstrate an involvement of MuRF1 in membrane protein-turnover, including the degradation of AChRs at the NMJ under atrophying conditions where MuRF1 also interacts and associates with Bif-1.


Assuntos
Lisossomos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Receptores Nicotínicos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Modelos Animais de Doenças , Endocitose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Junção Neuromuscular/metabolismo , Proteínas com Motivo Tripartido
14.
PLoS One ; 7(7): e40860, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815846

RESUMO

BACKGROUND: The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration. METHODOLOGY/PRINCIPAL FINDINGS: To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology. CONCLUSIONS/SIGNIFICANCE: Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle.


Assuntos
Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Junção Neuromuscular/enzimologia , Junção Neuromuscular/fisiopatologia , Regeneração , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Venenos Elapídicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Estabilidade Proteica/efeitos dos fármacos , Receptores Colinérgicos/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
15.
Proc Natl Acad Sci U S A ; 107(5): 2031-6, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133847

RESUMO

Myosin V motor proteins facilitate recycling of synaptic receptors, including AMPA and acetylcholine receptors, in central and peripheral synapses, respectively. To shed light on the regulation of receptor recycling, we employed in vivo imaging of mouse neuromuscular synapses. We found that myosin Va cooperates with PKA on the postsynapse to maintain size and integrity of the synapse; this cooperation also regulated the lifetime of acetylcholine receptors. Myosin Va and PKA colocalized in subsynaptic enrichments. These accumulations were crucial for synaptic integrity and proper cAMP signaling, and were dependent on AKAP function, myosin Va, and an intact actin cytoskeleton. The neuropeptide and cAMP agonist, calcitonin-gene related peptide, rescued fragmentation of synapses upon denervation. We hypothesize that neuronal ligands trigger local activation of PKA, which in turn controls synaptic integrity and turnover of receptors. To this end, myosin Va mediates correct positioning of PKA in a postsynaptic microdomain, presumably by tethering PKA to the actin cytoskeleton.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Placa Motora/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Ancoragem à Quinase A/antagonistas & inibidores , Proteínas de Ancoragem à Quinase A/metabolismo , Actinas/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Denervação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Proteínas Motores Moleculares/metabolismo , Placa Motora/efeitos dos fármacos , Cadeias Pesadas de Miosina/antagonistas & inibidores , Miosina Tipo V/antagonistas & inibidores , Plasticidade Neuronal , Receptores Colinérgicos/metabolismo , Transdução de Sinais
16.
Traffic ; 11(5): 637-50, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20149155

RESUMO

Hormone- and neuropeptide-containing secretory granules (SGs) of neuroendocrine PC12 cells are formed at the trans- Golgi network as immature SGs. These intermediates are converted to mature SGs in a complex maturation process, including matrix condensation, processing of cargo proteins and removal of proteins and membrane in clathrin-coated vesicles. The resulting mature SGs undergo Ca2+-dependent exocytosis upon an appropriate stimulus. We here show that the motor protein myosin Va is implicated in a maturation step of SGs, their binding to F-actin and their stimulated exocytosis. Interference with myosin Va function blocked the removal of the transmembrane protein furin from maturing SGs without affecting condensation and processing of proteins of the SG lumen. Furthermore, the ATP-inhibited binding of SGs to F-actin decreased with progressive maturation and upon interference with myosin Va function. Moreover, the expression of a dominant-negative myosin Va-tail or shRNA-based downregulation of myosin Va interfered with stimulated exocytosis of SGs. In summary,our data suggest an essential function of myosin Va in the membrane remodeling of SGs during maturation and a role in their exocytosis.


Assuntos
Exocitose/fisiologia , Vesículas Secretórias/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Cálcio/metabolismo , Estruturas Celulares/metabolismo , Vesículas Revestidas por Clatrina , Furina/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Células PC12 , Ratos , Vesículas Secretórias/metabolismo
17.
Cell Signal ; 21(5): 819-26, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19263518

RESUMO

Signalling through protein kinase A (PKA) triggers a multitude of intracellular effects in response to a variety of extracellular stimuli. To guarantee signal specificity, different PKA isoforms are compartmentalised by Akinase anchoring proteins (AKAPs) into functional microdomains. By using genetically encoded fluorescent reporters of cAMP concentration that are targeted to the intracellular sites where PKA type I and PKA type II isoforms normally reside, we directly show for the first time spatially and functionally separate PKA microdomains in mouse skeletal muscle in vivo. The reporters localised into clearly distinct patterns within sarcomers, from where they could be displaced by means of AKAP disruptor peptides indicating the presence of disparate PKA type I and PKA type II anchor sites within skeletal muscle fibres. The functional relevance of such differential localisation was underscored by the finding of mutually exclusive and AKAP-dependent increases in [cAMP] in the PKA type I and PKA type II microdomains upon application of different cAMP agonists. Specifically, the sensors targeted to the PKA type II compartment responded only to norepinephrine, whereas those targeted to the PKA type I compartment responded only to alpha-calcitonin gene-related peptide. Notably, in dystrophic mdx mice the localisation pattern of the reporters was altered and the functional separation of the cAMP microdomains was abolished. In summary, our data indicate that an efficient organisation in microdomains of the cAMP/PKA pathway exists in the healthy skeletal muscle and that such organisation is subverted in dystrophic skeletal muscle.


Assuntos
Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Músculo Esquelético/enzimologia , Distrofia Muscular de Duchenne/enzimologia , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/metabolismo , Genes Reporter , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Norepinefrina/farmacologia
18.
J Cell Biol ; 173(2): 187-93, 2006 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-16618815

RESUMO

Skeletal muscle contraction depends on the release of Ca(2+) from the sarcoplasmic reticulum (SR), but the dynamics of the SR free Ca(2+) concentration ([Ca(2+)](SR)), its modulation by physiological stimuli such as catecholamines, and the concomitant changes in cAMP handling have never been directly determined. We used two-photon microscopy imaging of GFP-based probes expressed in mouse skeletal muscles to monitor, for the first time in a live animal, the dynamics of [Ca(2+)](SR) and cAMP. Our data, which were obtained in highly physiological conditions, suggest that free [Ca(2+)](SR) decreases by approximately 50 microM during single twitches elicited through nerve stimulation. We also demonstrate that cAMP levels rise upon beta-adrenergic stimulation, leading to an increased efficacy of the Ca(2+) release/reuptake cycle during motor nerve stimulation.


Assuntos
Cálcio/metabolismo , AMP Cíclico/metabolismo , Citosol/metabolismo , Contração Muscular/fisiologia , Retículo Sarcoplasmático/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Indóis/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
19.
Eur J Biochem ; 270(11): 2343-52, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12755688

RESUMO

Ca2+ and cAMP are ubiquitous second messengers in eukaryotes and control numerous physiological responses ranging from fertilization to cell death induction. To distinguish between these different responses, their subtle regulation in time, space and amplitude is needed. Therefore, the characterization of the signalling process requires measurement of second messengers with tools of precise localization, high dynamic range and as little disturbance of cell physiology as possible. Recently, fluorescent proteins of marine jellyfish have given rise to a set of genetically encoded biosensors which fulfil these criteria and which have already led to important new insights into the subcellular handling of Ca2+ and cAMP. The use of these probes in combination with new microscopical methods such as two-photon microscopy now enables researchers to study second messenger signalling in intact tissues. In this review, the genetically encoded measurement probes and their origin are briefly introduced and some recent insights into the spatio-temporal complexity of both Ca2+ and cAMP signalling obtained with these tools are discussed.


Assuntos
Corantes Fluorescentes/farmacologia , Transdução de Sinais , Equorina/metabolismo , Animais , Técnicas Biossensoriais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde , Humanos , Cinética , Proteínas Luminescentes/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Cifozoários , Transfecção
20.
J Cell Sci ; 116(Pt 7): 1339-48, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12615975

RESUMO

Neuroendocrine secretory granules, the storage organelles for neuropeptides and hormones, are formed at the trans-Golgi network, stored inside the cell and exocytosed upon stimulation. Previously, we have reported that newly formed secretory granules of PC12 cells are transported in a microtubule-dependent manner from the trans-Golgi network to the F-actin-rich cell cortex, where they undergo short directed movements and exhibit a homogeneous distribution. Here we provide morphological and biochemical evidence that myosin Va is associated with secretory granules. Expression of a dominant-negative tail domain of myosin Va in PC12 cells led to an extensive clustering of secretory granules close to the cell periphery, a loss of their cortical restriction and a strong reduction in their motility in the actin cortex. Based on this data we propose a model that implies a dual transport system for secretory granules: after microtubule-dependent delivery to the cell periphery, secretory granules exhibit a myosin Va-dependent transport leading to their restriction and even dispersal in the F-actin-rich cortex of PC12 cells.


Assuntos
Actinas/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Vesículas Secretórias/metabolismo , Actinas/ultraestrutura , Animais , Compartimento Celular/fisiologia , Citoplasma/ultraestrutura , Citoesqueleto/ultraestrutura , Microscopia Eletrônica , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/ultraestrutura , Miosina Tipo V/genética , Miosina Tipo V/ultraestrutura , Células PC12 , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Ratos , Vesículas Secretórias/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA