Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Nat Commun ; 13(1): 2982, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624087

RESUMO

Cytotoxic stress activates stress-activated kinases, initiates adaptive mechanisms, including the unfolded protein response (UPR) and autophagy, and induces programmed cell death. Fatty acid unsaturation, controlled by stearoyl-CoA desaturase (SCD)1, prevents cytotoxic stress but the mechanisms are diffuse. Here, we show that 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) [PI(18:1/18:1)] is a SCD1-derived signaling lipid, which inhibits p38 mitogen-activated protein kinase activation, counteracts UPR, endoplasmic reticulum-associated protein degradation, and apoptosis, regulates autophagy, and maintains cell morphology and proliferation. SCD1 expression and the cellular PI(18:1/18:1) proportion decrease during the onset of cell death, thereby repressing protein phosphatase 2 A and enhancing stress signaling. This counter-regulation applies to mechanistically diverse death-inducing conditions and is found in multiple human and mouse cell lines and tissues of Scd1-defective mice. PI(18:1/18:1) ratios reflect stress tolerance in tumorigenesis, chemoresistance, infection, high-fat diet, and immune aging. Together, PI(18:1/18:1) is a lipokine that links fatty acid unsaturation with stress responses, and its depletion evokes stress signaling.


Assuntos
Transdução de Sinais , Estearoil-CoA Dessaturase , Animais , Apoptose , Ácidos Graxos , Camundongos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Resposta a Proteínas não Dobradas
3.
JAMA Intern Med ; 182(3): 291-300, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35040871

RESUMO

IMPORTANCE: Telomeres protect DNA from damage. Because they shorten with each mitotic cycle, leukocyte telomere length (LTL) serves as a mitotic clock. Reduced LTL has been associated with multiple human disorders. OBJECTIVE: To determine the association between LTL and overall as well as disease-specific mortality and morbidity. DESIGN, SETTING, AND PARTICIPANTS: This multicenter, community-based cohort study conducted from March 2006 to December 2010 included longitudinal follow-up (mean [SD], 12 [2] years) for 472 432 English participants from the United Kingdom Biobank (UK Biobank) and analyzed morbidity and mortality. The data were analyzed in 2021. MAIN OUTCOMES AND MEASURES: Hazard ratios (HRs) and odds ratios for mortality and morbidity associated with a standard deviation change in LTL, adjusted for age, sex, body mass index (calculated as weight in kilograms divided by height in meters squared), and ethnicity. RESULTS: This study included a total of 472 432 English participants, of whom 54% were women (mean age, 57 years). Reduced LTL was associated with increased overall (HR, 1.08; 95% CI, 1.07-1.09), cardiovascular (HR, 1.09; 95% CI, 1.06-1.12), respiratory (HR, 1.40; 95% CI, 1.34-1.45), digestive (HR, 1.26; 95% CI, 1.19-1.33), musculoskeletal (HR, 1.51; 95% CI, 1.35-1.92), and COVID-19 (HR, 1.15; 95% CI, 1.07-1.23) mortality, but not cancer-related mortality. A total of 214 disorders were significantly overrepresented and 37 underrepresented in participants with shorter LTL. Respiratory (11%), digestive/liver-related (14%), circulatory (18%), and musculoskeletal conditions (6%), together with infections (5%), accounted for most positive associations, whereas (benign) neoplasms and endocrinologic/metabolic disorders were the most underrepresented entities. Malignant tumors, esophageal cancer, and lymphoid and myeloid leukemia were significantly more common in participants with shorter LTL, whereas brain cancer and melanoma were less prevalent. While smoking and alcohol consumption were associated with shorter LTL, additional adjustment for both factors, as well as cognitive function/major comorbid conditions, did not significantly alter the results. CONCLUSIONS AND RELEVANCE: This cohort study found that shorter LTL was associated with a small risk increase of overall mortality, but a higher risk of mortality was associated with specific organs and diseases.


Assuntos
Leucócitos/fisiologia , Mortalidade/tendências , Telômero/fisiologia , Adulto , Idoso , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Risco , Reino Unido
5.
J Exp Med ; 213(4): 535-53, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26951333

RESUMO

Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways.


Assuntos
Envelhecimento/imunologia , Restrição Calórica , Diferenciação Celular/imunologia , Senescência Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Células Progenitoras Linfoides/imunologia , Linfopoese/imunologia , Animais , Células-Tronco Hematopoéticas/citologia , Células Progenitoras Linfoides/citologia , Camundongos , Camundongos Knockout
6.
Nat Commun ; 6: 7677, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26220524

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is associated with accumulation of particular oncogenic mutations and recent genetic sequencing studies have identified ataxia telangiectasia-mutated (ATM) mutations in PDAC cohorts. Here we report that conditional deletion of ATM in a mouse model of PDAC induces a greater number of proliferative precursor lesions coupled with a pronounced fibrotic reaction. ATM-targeted mice display altered TGFß-superfamily signalling and enhanced epithelial-to-mesenchymal transition (EMT) coupled with shortened survival. Notably, our mouse model recapitulates many features of more aggressive human PDAC subtypes. Particularly, we report that low expression of ATM predicts EMT, a gene signature specific for Bmp4 signalling and poor prognosis in human PDAC. Our data suggest an intimate link between ATM expression and pancreatic cancer progression in mice and men.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , RNA Mensageiro/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Western Blotting , Proteína Morfogenética Óssea 4/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Sobrevivência Celular , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
7.
Blood ; 126(5): 620-8, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26012568

RESUMO

Wild-type p53-induced phosphatase 1 (Wip1), a phosphatase previously considered as an oncogene, has been implicated in the regulation of thymus homeostasis and neutrophil maturation. However, the role of Wip1 in B-cell development is unknown. We show that Wip1-deficient mice exhibit a significant reduction of B-cell numbers in the bone marrow, peripheral blood, and spleen. A reciprocal transplantation approach revealed a cell-intrinsic defect in early B-cell precursors caused by Wip1 deficiency. Further experiments revealed that Wip1 deficiency led to a sustained activation of p53 in B cells, which led to increased level of apoptosis in the pre-B-cell compartment. Notably, the impairment of B-cell development in Wip1-deficient mice was completely rescued by genetic ablation of p53, but not p21. Therefore, loss of Wip1 phosphatase induces a p53-dependent, but p21-independent, mechanism that impairs B-cell development by enhancing apoptosis in early B-cell precursors. Moreover, Wip1 deficiency exacerbated a decline in B-cell development caused by aging as evidenced in mice with aging and mouse models with serial competitive bone marrow transplantation, respectively. Our present data indicate that Wip1 plays a critical role in maintaining antigen-independent B-cell development in the bone marrow and preventing an aging-related decline in B-cell development.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Envelhecimento/imunologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Apoptose , Linfócitos B/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/genética , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Proteína Fosfatase 2C , Transdução de Sinais
8.
EMBO J ; 34(10): 1371-84, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25820263

RESUMO

The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy-controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb-dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase-deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy-induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.


Assuntos
Aneuploidia , Telomerase/metabolismo , Telômero/metabolismo , Animais , Senescência Celular/genética , Senescência Celular/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Telomerase/genética , Telômero/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Hepatology ; 61(6): 2030-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25704606

RESUMO

UNLABELLED: The liver possesses extraordinary regenerative capacity in response to injury. However, liver regeneration (LR) is often impaired in disease conditions. Wild-type p53-induced phosphatase 1 (Wip1) is known as a tumor promoter and enhances cell proliferation, mainly by deactivating antioncogenes. However, in this work, we identified an unexpected role of Wip1 in LR. In contrast to its known role in promoting cell proliferation in extrahepatic tissue, we found that Wip1 suppressed hepatocyte proliferation after partial hepatectomy (PHx). Deletion of Wip1 increased the rate of LR after PHx. Enhanced LR in Wip1-deficient mice was a result of the activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) pathway. Furthermore, we showed that Wip1 physically interacted with and dephosphorylated mTOR. Interestingly, inhibition of Wip1 also activated the p53 pathway during LR. Disruption of the p53 pathway further enhanced LR in Wip1-deficient mice. Therefore, inhibition of Wip1 has a dual role in LR, i.e., promoting hepatocyte proliferation through activation of the mTORC1 pathway, meanwhile suppressing LR through activation of the p53 pathway. However, the proregenerative role of mTORC1 overwhelms the antiproliferative role of p53. Furthermore, CCT007093, a Wip1 inhibitor, enhanced LR and increased the survival rate of mice after major hepatectomy. CONCLUSION: mTOR is a new direct target of Wip1. Wip1 inhibition can activate the mTORC1 pathway and enhance hepatocyte proliferation after hepatectomy. These findings have clinical applications in cases where LR is critical, including acute liver failure, cirrhosis, or small-for-size liver transplantations.


Assuntos
Hepatócitos/fisiologia , Regeneração Hepática , Fosfoproteínas Fosfatases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Hepatectomia , Sistema de Sinalização das MAP Quinases , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Proteína Fosfatase 2C , Proteína Supressora de Tumor p53/metabolismo
10.
EMBO J ; 34(5): 624-40, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25609789

RESUMO

Aging and carcinogenesis coincide with the accumulation of DNA damage and mutations in stem and progenitor cells. Molecular mechanisms that influence responses of stem and progenitor cells to DNA damage remain to be delineated. Here, we show that niche positioning and Wnt signaling activity modulate the sensitivity of intestinal stem and progenitor cells (ISPCs) to DNA damage. ISPCs at the crypt bottom with high Wnt/ß-catenin activity are more sensitive to DNA damage compared to ISPCs in position 4 with low Wnt activity. These differences are not induced by differences in cell cycle activity but relate to DNA damage-dependent activation of Wnt signaling, which in turn amplifies DNA damage checkpoint activation. The study shows that instructed enhancement of Wnt signaling increases radio-sensitivity of ISPCs, while inhibition of Wnt signaling decreases it. These results provide a proof of concept that cell intrinsic levels of Wnt signaling modulate the sensitivity of ISPCs to DNA damage and heterogeneity in Wnt activation in the stem cell niche contributes to the selection of ISPCs in the context of DNA damage.


Assuntos
Dano ao DNA/fisiologia , Intestinos/citologia , Tolerância a Radiação/fisiologia , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Western Blotting , Citometria de Fluxo , Imunofluorescência , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas
11.
Future Oncol ; 11(2): 193-203, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25040106

RESUMO

BACKGROUND: N-acetyl-glucosaminidase (NAG) is a potential marker of genotoxicity. We retrospectively analyzed plasma NAG and clinico-pathologic features in advanced gastrointestinal adenocarcinoma patients. METHODS: Plasma from 118 patients and 51 healthy volunteers was analyzed for associations between NAG levels and age, disease presence, stage, treatment responses and survival. RESULTS: Pretreatment NAG correlated with age but was independently increased in metastatic versus locally advanced disease, particularly in gastric/esophageal patients. NAG was also associated with reduced overall survival. In subgroup analysis, increased NAG activity between day 1 and 2 of chemotherapy cycle 1 correlated with treatment response. CONCLUSION: We demonstrated that NAG correlates with gastrointestinal cancer outcomes. Further studies are required to determine if plasma markers of genotoxicity can be useful for disease monitoring.


Assuntos
Acetilglucosaminidase/sangue , Adenocarcinoma/sangue , Neoplasias Colorretais/sangue , Neoplasias Esofágicas/sangue , Neoplasias Gástricas/sangue , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/mortalidade , Adenocarcinoma/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Estudos de Casos e Controles , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Resultado do Tratamento , Adulto Jovem
12.
Blood ; 124(22): 3237-40, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25232057

RESUMO

Telomere shortening limits the proliferative capacity of human cells, and age-dependent shortening of telomeres occurs in somatic tissues including hematopoietic stem cells (HSCs). It is currently unknown whether genomic and molecular damage that occurs in HSCs induced by telomere shortening is transmitted to the progenitor cells. Here we show that telomere shortening results in DNA damage accumulation and gene expression changes in quiescent HSCs of aged mice. Upon activation, a subset of HSCs with elevated levels of DNA damage and p16 expression are blocked from cell cycle entry, and apoptosis is induced in HSCs entering the cell cycle. Activation of both checkpoints associates with normalization of DNA damage and gene expression profiles at early progenitor stages. These findings indicate that quiescent HSCs have an elevated tolerance to accumulate genomic alterations in response to telomere shortening, but the transmission of these aberrations to the progenitor cell level is prevented by senescence and apoptosis.


Assuntos
Apoptose/fisiologia , Senescência Celular/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Encurtamento do Telômero/fisiologia , Animais , Ciclo Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Regulação para Baixo , Hematopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Blood ; 123(6): 851-62, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24371210

RESUMO

Gadd45a has been involved in DNA damage response and in many malignancies, including leukemia. However, the function of Gadd45a in hematopoietic stem cells (HSCs) remains unknown. Here, we reported that Gadd45a-deficient (Gadd45a(-/-)) mice showed a normal hematologic phenotype under homeostatic conditions. However, following 5-fluorouracil treatment, Gadd45a(-/-) HSCs exhibited a faster recovery, associated with an increase in the proliferation rate. Interestingly, young Gadd45a(-/-) HSCs showed enhanced reconstitution ability in serial transplantation. Following ionizing radiation (IR), young Gadd45a(-/-) HSCs exhibited an increased resistance to IR-induced DNA damage, associated with a decrease in the apoptosis rate and delayed DNA repair. The significantly higher level of DNA damage in Gadd45a(-/-) HSCs ultimately promoted B-cell leukemia in further transplanted recipient mice. In old mice, Gadd45a(-/-) HSCs were functionally equal to wild-type HSCs but exhibited more DNA damage accumulation and increased sensitivity to IR than wild-type HSCs. In conclusion, Gadd45a plays a significant role in HSC stress responses. Gadd45a deficiency leads to DNA damage accumulation and impairment in apoptosis after exposure to IR, which increases the susceptibility of leukemogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Dano ao DNA/efeitos dos fármacos , Células-Tronco Hematopoéticas/patologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Radiação Ionizante , Estresse Fisiológico/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Dano ao DNA/efeitos da radiação , Citometria de Fluxo , Imunofluorescência , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico/efeitos da radiação
14.
Gut ; 63(9): 1501-12, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24092862

RESUMO

BACKGROUND AND AIMS: The cyclin-dependent kinase inhibitor p21 has been implicated as a tumour suppressor. Moreover, recent genetic studies suggest that p21 might be a potential therapeutic target to improve regeneration in chronic diseases. The aim of this study was to delineate the role of p21 in chronic liver injury and to specify its role in hepatocarcinogenesis in a mouse model of chronic cholestatic liver injury. METHODS: The degree of liver injury, regeneration and tumour formation was assessed in Mdr2(-/-) mice and compared with Mdr2/ p21(-/-) mice. Moreover, the role of p21 was evaluated in hepatoma cells in vitro and in human hepatocellular carcinoma (HCC). RESULTS: Mdr2(-/-) mice developed HCCs as a consequence of chronic inflammatory liver injury. In contrast, tumour development was profoundly delayed in Mdr2/ p21(-/-) mice. Delayed tumour development was accompanied by markedly impaired liver regeneration in Mdr2/ p21(-/-) mice. Moreover, the regenerative capacity of the Mdr2/ p21(-/-) livers in response to partial hepatectomy declined with age in these mice. Hepatocyte transplantation experiments revealed that impaired liver regeneration was due to intrinsic factors within the cells and changes in the Mdr2/ p21(-/-) microenvironment. In human HCCs, a subset of tumours expressed p21, which was associated with a significant shorter patient survival. CONCLUSIONS: We provide experimental evidence that p21 is required for sustained liver regeneration and tumour development in chronic liver injury indicating that p21 needs to be tightly regulated in order to balance liver regeneration and cancer risk. Moreover, we identify p21 as a negative prognostic marker in human HCC.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/etiologia , Colestase Intra-Hepática/complicações , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Insuficiência Hepática/fisiopatologia , Neoplasias Hepáticas/etiologia , Regeneração Hepática/fisiologia , Animais , Biomarcadores/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Linhagem Celular , Doença Crônica , Progressão da Doença , Feminino , Hepatectomia , Insuficiência Hepática/etiologia , Insuficiência Hepática/metabolismo , Insuficiência Hepática/cirurgia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico
15.
Cell Stem Cell ; 14(1): 27-39, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24268696

RESUMO

Although somatic cell nuclear transfer (SCNT) and induction of pluripotency (to form iPSCs) are both recognized reprogramming methods, there has been relatively little comparative analysis of the resulting pluripotent cells. Here, we examine the capacity of these two reprogramming approaches to rejuvenate telomeres using late-generation telomerase-deficient (Terc(-/-)) mice that exhibit telomere dysfunction and premature aging. We found that embryonic stem cells established from Terc(-/-) SCNT embryos (Terc(-/-) ntESCs) have greater differentiation potential and self-renewal capacity than Terc(-/-) iPSCs. Remarkably, SCNT results in extensive telomere lengthening in cloned embryos and improved telomere capping function in the established Terc(-/-) ntESCs. In addition, mitochondrial function is severely impaired in Terc(-/-) iPSCs and their differentiated derivatives but significantly improved in Terc(-/-) ntESCs. Thus, our results suggest that SCNT-mediated reprogramming mitigates telomere dysfunction and mitochondrial defects to a greater extent than iPSC-based reprogramming. Understanding the basis of this differential could help optimize reprogramming strategies.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Transferência Nuclear , RNA/fisiologia , Telomerase/fisiologia , Telômero/genética , Trifosfato de Adenosina/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Hibridização in Situ Fluorescente , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Placa Neural/metabolismo , Placa Neural/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Stem Cell Res ; 12(1): 250-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24280419

RESUMO

Exonuclease 1 (Exo1) has been implicated in the regulation of DNA damage responses in stem cells with dysfunctional telomeres. However, it is unclear whether Exo1-mediated DNA maintenance pathways play a role in the maintenance of genomic stability and the self-renewal of tissue stem cells in mice with functional telomeres. Here, we analyzed the proliferative capacity of neural stem cells (NSCs) and hematopoietic stem cells (HSCs) from Exo1(-/-) mice. Our study shows that Exo1 deficiency impairs the maintenance of genomic stability and proliferative capacity in NSCs but not HSCs. In line with these results, we detected a decrease in proliferation and an up-regulation of p21 expression levels in Exo1-deficient NSCs but not Exo1-deficient HSCs. Our data provide experimental evidence that Exo1 deficiency has a differential impact on the homeostasis and proliferative capacity of tissue stem cells in the brain and bone marrow, suggesting that different tissue stem cells utilize distinct mechanisms for maintaining their genomic stability. Our current study provides important insight into the role of Exo1-mediated DNA maintenance pathways in the maintenance of genomic stability and the proliferative capacity of tissue stem cells.


Assuntos
Exodesoxirribonucleases/metabolismo , Instabilidade Genômica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Animais , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Exodesoxirribonucleases/deficiência , Exodesoxirribonucleases/genética , Células-Tronco Hematopoéticas/enzimologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/transplante , Bulbo Olfatório/fisiopatologia , Espécies Reativas de Oxigênio/toxicidade , Regulação para Cima
17.
Cell ; 154(5): 1112-1126, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23993099

RESUMO

Consensus holds that hematopoietic stem cells (HSCs) give rise to multipotent progenitors (MPPs) of reduced self-renewal potential and that MPPs eventually produce lineage-committed progenitor cells in a stepwise manner. Using a single-cell transplantation system and marker mice, we unexpectedly found myeloid-restricted progenitors with long-term repopulating activity (MyRPs), which are lineage-committed to megakaryocytes, megakaryocyte-erythroid cells, or common myeloid cells (MkRPs, MERPs, or CMRPs, respectively) in the phenotypically defined HSC compartment together with HSCs. Paired daughter cell assays combined with transplantation revealed that HSCs can give rise to HSCs via symmetric division or directly differentiate into MyRPs via asymmetric division (yielding HSC-MkRP or HSC-CMRP pairs). These myeloid bypass pathways could be essential for fast responses to ablation stress. Our results show that loss of self-renewal and stepwise progression through specific differentiation stages are not essential for lineage commitment of HSCs and suggest a revised model of hematopoietic differentiation.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células Progenitoras Mieloides/citologia , Animais , Antígenos CD34 , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/metabolismo
18.
Int J Cancer ; 132(9): 2032-43, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23023397

RESUMO

Telomerase is activated in the majority of invasive breast cancers, but the time point of telomerase activation during mammary carcinogenesis is not clear. We have recently presented a transgenic mouse model to study human telomerase reverse transcriptase (TERT) gene expression in vivo (hTERTp-lacZ). In the present study, hTERTp-lacZxWAP-T bitransgenic mice were generated to analyze the mechanisms responsible for human and mouse TERT upregulation during tumor progression in vivo. We found that telomerase activity and TERT expression were consistently upregulated in SV40-induced invasive mammary tumors compared to normal and hyperplastic tissues and ductal carcinoma in situ (DCIS). Human and mouse TERT genes are regulated similarly in the breast tissue, involving the CEBP transcription factors. Loss of CEBP-α and induction of CEBP-ß expression correlated well with the activation of TERT expression in mouse mammary tumors. Transfection of CEBP-α into human or murine cells resulted in TERT repression, whereas knockdown of CEBP-α in primary human mammary epithelial cells resulted in reactivation of endogenous TERT expression and telomerase activity. Conversely, ectopic expression of CEBP-ß activated endogenous TERT gene expression. Moreover, ChIP and EMSA experiments revealed binding of CEBP-α and CEBP-ß to human TERT-promoter. This is the first evidence indicating that CEBP-α and CEBP-ß are involved in TERT gene regulation during carcinogenesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Mamárias Experimentais/patologia , Proteínas do Leite/genética , Regiões Promotoras Genéticas/genética , Telomerase/genética , Animais , Western Blotting , Proteínas Estimuladoras de Ligação a CCAAT/genética , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telomerase/metabolismo , Ativação Transcricional , Células Tumorais Cultivadas
20.
Aging (Albany NY) ; 4(4): 290-304, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22529335

RESUMO

Defective DNA repair is widely acknowledged to negatively impact on healthy aging, since mutations in DNA repair factors lead to accelerated and premature aging. However, the opposite, namely if improved DNA repair will also increase the life or health span is less clear, and only few studies have tested if overexpression of DNA repair factors modulates life and health span in cells or organisms. Recently, we identified and characterized SNEVhPrp19/hPso4, a protein that plays a role in DNA repair and pre-mRNA splicing, and observed a doubling of the replicative life span upon ectopic overexpression, accompanied by lower basal DNA damage and apoptosis levels as well as an increased resistance to oxidative stress. Here we find that SNEVhPrp19/hPso4 is phosphorylated at S149 in an ataxia telangiectasia mutated protein (ATM)-dependent manner in response to oxidative stress and DNA double strand break inducing agents. By overexpressing wild-type SNEVhPrp19/hPso4 and a phosphorylation-deficient point-mutant, we found that S149 phosphorylation is necessary for mediating the resistance to apoptosis upon oxidative stress and is partially necessary for elongating the cellular life span. Therefore, ATM dependent phosphorylation of SNEVhPrp19/hPso4 upon DNA damage or oxidative stress might represent a novel axis capable of modulating cellular life span.


Assuntos
Apoptose/genética , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Estresse Oxidativo/genética , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/química , Células HeLa , Humanos , Proteínas Serina-Treonina Quinases/química , Precursores de RNA/química , Precursores de RNA/genética , Análise de Sequência de Proteína , Serina/genética , Serina/metabolismo , Proteínas Supressoras de Tumor/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA