Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Nano ; 7(6): 1742-1758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33564464

RESUMO

In recent years, an increasing number of polymeric composites incorporating engineered nanomaterials (ENMs) have reached the market. Such nano-enabled products (NEPs) present enhanced performance through improved mechanical, thermal, UV protection, electrical, and gas barrier properties. However, little is known about how environmental weathering impacts ENM release, especially for high-tonnage NEPs like kaolin products, which have not been extensively examined by the scientific community. Here we study the simulated environmental weathering of different polymeric nanocomposites (epoxy, polyamide, polypropylene) filled with organic (multiwalled carbon nanotube, graphene, carbon black) and inorganic (WS2, SiO2, kaolin, Fe2O3, Cu-phthalocyanines) ENMs. Multiple techniques were employed by researchers at three laboratories to extensively evaluate the effect of weathering: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), optical microscopy, contact angle measurements, gravimetric analysis, analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. This work aimed to elucidate the extent to which weathering protocol (i.e. wet vs. dry) and diverse filler characteristics modulate fragment release and polymer matrix degradation. In doing so, it expanded the established NanoRelease protocol, previously used for analyzing fragment emission, by evaluating two significant additions: (1) simulated weathering with rain events and (2) fractionation of sample leachate prior to analysis. Comparing different composite materials and protocols demonstrated that the polymer matrix is the most significant factor in NEP aging. Wet weathering is more realistic than dry weathering, but dry weathering seems to provide a more controlled release of material over wet. Wet weathering studies could be complicated by leaching, and the addition of a fractionation step can improve the quality of UV-vis measurements.

2.
Chem Sci ; 8(6): 4619-4625, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626570

RESUMO

Encouraging developments demonstrate that few transition metal and organometallic catalysts can operate in a bioorthogonal fashion and promote non-natural chemistry in living systems by minimizing undesired side reactions with cellular components. These catalytic processes have potential for applications in medicinal chemistry and chemical biology. However, the stringent conditions of the cell environment severely limit the number of accessible metal catalysts and exogenous reactions. Herein, we report an unorthodox approach and a new type of bioorthogonal catalytic reaction, in which a metal complex is an unconventional substrate and an exogenous biological molecule acts as a catalyst. In this reaction, riboflavin photocatalytically converts a PtIV prodrug into cisplatin within the biological environment. Due to the catalytic activity of riboflavin, cisplatin-like apoptosis is induced in cancer cells under extremely low doses of light, potentially preventing systemic off-target reactions. Photocatalytic and bioorthogonal turnover of PtIV into PtII species is an attractive strategy to amplify the antineoplastic action of metal-based chemotherapeutics with spatio-temporal control.

3.
Chem Commun (Camb) ; 52(59): 9299, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27377814

RESUMO

Correction for 'Near infrared activation of an anticancer Pt(IV) complex by Tm-doped upconversion nanoparticles' by Emmanuel Ruggiero et al., Chem. Commun., 2015, 51, 2091-2094.

4.
Chem Commun (Camb) ; 51(11): 2091-4, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25536114

RESUMO

The Pt(IV) complex cis,cis,trans-[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2] is photoactivated by near infrared light (980 nm) using NaYF4:Yb(3+)/Tm(3+)@NaYF4 core-shell upconversion nanoparticles. Coupling of this cisplatin precursor with the biocompatible PEGylated phospholipid DSPE-PEG(2000)-NH2 affords a valuable approach to decorate the surface of the nanoparticles, providing novel photoactivatable nanomaterials capable of releasing Pt(II) species upon NIR light excitation.


Assuntos
Antineoplásicos/química , Raios Infravermelhos , Nanopartículas/química , Compostos Organoplatínicos/química , Túlio/química , Fotólise , Pró-Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA