Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275957

RESUMO

Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the highly virulent Margarita/1958 strain. In recent years, chronic and persistent infections with low-virulent CSFV have been observed. Amino acid substitutions located in immunodominant epitopes of the envelope glycoprotein E2 of the attenuated isolates were attributed to positive selection due to suboptimal vaccination and control. To obtain a complete picture of the mutations involved in attenuation, we applied forward and reverse genetics using the evolutionary-related low-virulent CSFV/Pinar del Rio (CSF1058)/2010 (PdR) and highly virulent Margarita/1958 isolates. Sequence comparison of the two viruses recovered from experimental infections in pigs revealed 40 amino acid differences. Interestingly, the amino acid substitutions clustered in E2 and the NS5A and NS5B proteins. A long poly-uridine sequence was identified previously in the 3' untranslated region (UTR) of PdR. We constructed functional cDNA clones of the PdR and Margarita strains and generated eight recombinant viruses by introducing single or multiple gene fragments from Margarita into the PdR backbone. All chimeric viruses had comparable replication characteristics in porcine monocyte-derived macrophages. Recombinant PdR viruses carrying either E2 or NS5A/NS5B of Margarita, with 36 or 5 uridines in the 3'UTR, remained low virulent in 3-month-old pigs. The combination of these elements recovered the high-virulent Margarita phenotype. These results show that CSFV evolution towards attenuated variants in the field involved mutations in both structural and non-structural proteins and the UTRs, which act synergistically to determine virulence.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Animais , Suínos , Virulência/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/química , Mutação
2.
J Virol Methods ; 323: 114854, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989458

RESUMO

African swine fever virus (ASFV) is a complex DNA virus causing severe hemorrhagic disease in domestic pigs and wild boar. The disease has spread worldwide, with important socio-economic consequences. Early virus detection and control measures are crucial as there are no effective vaccines nor antivirals on the market. While the diagnosis of ASFV is fast and based primarily on qPCR, the detection of infectious ASFV is a labor-intensive process requiring susceptible macrophages and subsequent antibody-based staining or hemadsorption. The latter cannot detect ASFV isolates devoid of functional CD2v (EP402R) expression. Here, we report the development of a plasmid-based reporter assay (RA) for the sensitive detection and titration of infectious ASFV. To this end, we constructed a plasmid for secreted NanoLuc luciferase (secNluc) expression driven by the ASFV DNA polymerase gene G1211R promoter. Infection of plasmid-transfected immortalized porcine kidney macrophages (IPKM) followed by measurement of secNluc from cell culture supernatants allowed reliable automated quantification of infectious ASFV. The RA-based titers matched the titers determined by conventional p72-staining or hemadsorption protocols. The novel assay is specific for ASFV as it does not detect classical swine fever virus nor porcine reproductive and respiratory syndrome virus. It is applicable to ASFV of different genotypes, virulence, and sources, including ASFV from sera and whole blood from infected pigs as well as non-hemadsorbing ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Sus scrofa , Virulência , Macrófagos
3.
Nanomedicine ; 49: 102655, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681171

RESUMO

Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.


Assuntos
Doenças Transmissíveis , RNA , Suínos , Camundongos , Animais , RNA/genética , Antígenos , Doenças Transmissíveis/genética , Replicon/genética
4.
Viruses ; 13(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34696447

RESUMO

The sera from pigs infected with virulent classical swine fever virus (CSFV) contain substantial amounts of tumor necrosis factor (TNF), a prototype proinflammatory cytokine with pleiotropic activities. TNF limits the replication of CSFV in cell culture. In order to investigate the signaling involved in the antiviral activity of TNF, we employed small-molecule inhibitors to interfere specifically with JAK/STAT and NF-κB signaling pathways in near-to-primary endothelial PEDSV.15 cells. In addition, we knocked out selected factors of the interferon (IFN) induction and signaling pathways using CRISPR/Cas9. We found that the anti-CSFV effect of TNF was sensitive to JAK/STAT inhibitors, suggesting that TNF induces IFN signaling. Accordingly, we observed that the antiviral effect of TNF was dependent on intact type I IFN signaling as PEDSV.15 cells with the disrupted type I IFN receptor lost their capacity to limit the replication of CSFV after TNF treatment. Consequently, we examined whether TNF activates the type I IFN induction pathway. With genetically modified PEDSV.15 cells deficient in functional interferon regulatory factor 1 or 3 (IRF1 or IRF3), we observed that the anti-CSFV activity exhibited by TNF was dependent on IRF1, whereas IRF3 was dispensable. This was distinct from the lipopolysaccharide (LPS)-driven antiviral effect that relied on both IRF1 and IRF3. In agreement with the requirement of IRF1 to induce TNF- and LPS-mediated antiviral effects, intact IRF1 was also essential for TNF- and LPS-mediated induction of IFN-ß mRNA, while the activation of NF-κB was not dependent on IRF1. Nevertheless, NF-κB activation was essential for the TNF-mediated antiviral effect. Finally, we observed that CSFV failed to counteract the TNF-mediated induction of the IFN-ß mRNA in PEDSV.15 cells, suggesting that CSFV does not interfere with IRF1-dependent signaling. In summary, we report that the proinflammatory cytokine TNF limits the replication of CSFV in PEDSV.15 cells by specific induction of an IRF1-dependent antiviral type I IFN response.


Assuntos
Vírus da Febre Suína Clássica/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Replicação Viral/fisiologia , Animais , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/efeitos dos fármacos , Vírus da Febre Suína Clássica/patogenicidade , Citocinas/metabolismo , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Interações Hospedeiro-Patógeno , Fator Regulador 1 de Interferon/metabolismo , Interferon beta/genética , Interferons/metabolismo , Janus Quinase 1/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Suínos , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
5.
PLoS Pathog ; 17(7): e1009789, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320038

RESUMO

Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activation, characterized by a strong antiviral and pro-inflammatory phenotype combined with mediators related to T cell function. In line with this, following in vivo infection, RSV invades and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover, the global transcriptional response of LR-MSCs appears to follow RSV disease, switching from an early antiviral signature to repair mechanisms including differentiation, tissue remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs during virus-mediated acute lung injury and may have therapeutic implications.


Assuntos
Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/virologia , Pulmão/imunologia , Células-Tronco Mesenquimais/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Humanos , Pulmão/citologia , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/imunologia , Ovinos
6.
Emerg Infect Dis ; 27(7): 1811-1820, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152956

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. We observed that SARS-CoV-2 replicated efficiently only in monkey and cat AEC culture models. Whole-genome sequencing of progeny viruses revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat AEC cultures. Our findings, together with previous reports of human-to-animal spillover events, warrant close surveillance to determine the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2.


Assuntos
Animais Selvagens , COVID-19 , Animais , Células Epiteliais , Humanos , Sistema Respiratório , SARS-CoV-2
7.
Front Immunol ; 11: 622385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584723

RESUMO

Self-amplifying replicon RNA (RepRNA) promotes expansion of mRNA templates encoding genes of interest through their replicative nature, thus providing increased antigen payloads. RepRNA derived from the non-cytopathogenic classical swine fever virus (CSFV) targets monocytes and dendritic cells (DCs), potentially promoting prolonged antigen expression in the DCs, contrasting with cytopathogenic RepRNA. We engineered pestivirus RepRNA constructs encoding influenza virus H5N1 (A/chicken/Yamaguchi/7/2004) nucleoprotein (Rep-NP) or hemagglutinin (Rep-HA). The inherent RNase-sensitivity of RepRNA had to be circumvented to ensure efficient delivery to DCs for intracellular release and RepRNA translation; we have reported how only particular synthetic delivery vehicle formulations are appropriate. The question remained concerning RepRNA packaged in virus replicon particles (VRPs); we have now compared an efficient polyethylenimine (PEI)-based formulation (polyplex) with VRP-delivery as well as naked RepRNA co-administered with the potent bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) adjuvant. All formulations contained a Rep-HA/Rep-NP mix, to assess the breadth of both humoral and cell-mediated defences against the influenza virus antigens. Assessment employed pigs for their close immunological relationship to humans, and as natural hosts for influenza virus. Animals receiving the VRPs, as well as PEI-delivered RepRNA, displayed strong humoral and cellular responses against both HA and NP, but with VRPs proving to be more efficacious. In contrast, naked RepRNA plus c-di-AMP could induce only low-level immune responses, in one out of five pigs. In conclusion, RepRNA encoding different influenza virus antigens are efficacious for inducing both humoral and cellular immune defences in pigs. Comparisons showed that packaging within VRP remains the most efficacious for delivery leading to induction of immune defences; however, this technology necessitates employment of expensive complementing cell cultures, and VRPs do not target human cells. Therefore, choosing the appropriate synthetic delivery vehicle still offers potential for rapid vaccine design, particularly in the context of the current coronavirus pandemic.


Assuntos
Imunidade Celular , Imunidade Humoral , Vacinas contra Influenza/imunologia , RNA Viral/imunologia , Replicon/imunologia , Animais , COVID-19 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Pestivirus , RNA Viral/administração & dosagem , SARS-CoV-2 , Suínos , Proteínas do Core Viral/imunologia
8.
Virus Res ; 246: 28-34, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29337162

RESUMO

Recently, a novel antiviral compound (K22) that inhibits replication of a broad range of animal and human coronaviruses was reported to interfere with viral RNA synthesis by impairing double-membrane vesicle (DMV) formation (Lundin et al., 2014). Here we assessed potential antiviral activities of K22 against a range of viruses representing two (sub)families of the order Nidovirales, the Arteriviridae (porcine reproductive and respiratory syndrome virus [PRRSV], equine arteritis virus [EAV] and simian hemorrhagic fever virus [SHFV]), and the Torovirinae (equine torovirus [EToV] and White Bream virus [WBV]). Possible effects of K22 on nidovirus replication were studied in suitable cell lines. K22 concentrations significantly decreasing infectious titres of the viruses included in this study ranged from 25 to 50 µM. Reduction of double-stranded RNA intermediates of viral replication in nidovirus-infected cells treated with K22 confirmed the anti-viral potential of K22. Collectively, the data show that K22 has antiviral activity against diverse lineages of nidoviruses, suggesting that the inhibitor targets a critical and conserved step during nidovirus replication.


Assuntos
Antivirais/farmacologia , Arterivirus/efeitos dos fármacos , Benzamidas/farmacologia , Coronaviridae/efeitos dos fármacos , Equartevirus/efeitos dos fármacos , Piperidinas/farmacologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Torovirus/efeitos dos fármacos , Animais , Arterivirus/genética , Arterivirus/crescimento & desenvolvimento , Arterivirus/metabolismo , Carpas , Linhagem Celular , Chlorocebus aethiops , Coronaviridae/genética , Coronaviridae/crescimento & desenvolvimento , Coronaviridae/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Equartevirus/genética , Equartevirus/crescimento & desenvolvimento , Equartevirus/metabolismo , Mesocricetus , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/crescimento & desenvolvimento , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , RNA de Cadeia Dupla/antagonistas & inibidores , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/genética , RNA Viral/antagonistas & inibidores , RNA Viral/biossíntese , RNA Viral/genética , Torovirus/genética , Torovirus/crescimento & desenvolvimento , Torovirus/metabolismo , Replicação Viral/efeitos dos fármacos
9.
Sci Rep ; 7(1): 16379, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180817

RESUMO

Studies in the mouse model indicate that the nucleoprotein of influenza A virus represents an interesting vaccine antigen being well conserved across subtypes of influenza virus but still able to induce protective immune responses. Here we show that immunizations of pigs with vesicular stomatitis virus- and classical swine fever virus-derived replicon (VRP) particles expressing the nucleoprotein (NP) of H1N1 A/swine/Belzig/2/01 induced potent antibody and T-cell responses against influenza A virus. In contrast to a conventional whole inactivated virus vaccine, the VRP vaccines induced both NP-specific CD4 and CD8 T cells responses, including interferon-γ and tumor-necrosis-factor dual-secreting cell. Although T-cells and antibody responses were cross-reactive with the heterologous H1N2 A/swine/Bakum/R757/2010 challenge virus, they did not provide protection against infection. Surprisingly, vaccinated pigs showed enhanced virus shedding, lung inflammation and increased levels of systemic and lung interferon-α as well as elevated lung interleukin-6. In conclusion, our study shows that NP, although efficacious in the mouse model, appears not to be a promising stand-alone vaccine antigen for pigs.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Vírion/imunologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Citocinas/metabolismo , Vetores Genéticos/genética , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Suínos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Carga Viral , Vírion/genética
10.
J Control Release ; 266: 256-271, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28935594

RESUMO

The major limitations with large and complex self-amplifying RNA vaccines (RepRNA) are RNase-sensitivity and inefficient translation in dendritic cells (DCs). Condensing RepRNA with polyethylenimine (PEI) gave positive in vitro readouts, but was largely inferior to virus-like replicon particles (VRP) or direct electroporation. In the present study, we improved such polyplex formulation and determined that fine-tuning of the polyplex structure is essential for ensuring efficacious translation. Thereby, three parameters dominate: (i) PEI molecular weight (MW); (ii) RepRNA:PEI (weight:weight) ratio; and (iii) inclusion of cell penetrating peptides (CPPs). Seven commercially available linear PEIs (MW 2,500-250,000) were classified as strong, intermediate or low for their aptitude at complexing and protecting RepRNA for delivery into porcine blood DCs. Inclusion of (Arg)9 or TAT(57-57) CPPs further modified the translation readouts, but varied for different gene expressions. Dependent on the formulation, translation of the gene of interest (GOI) inserted into the RepRNA (luciferase, or influenza virus hemagglutinin or nucleoprotein) could decrease, while the RepRNA structural gene (E2) translation increased. This was noted in the porcine SK6 cell line, as well as both porcine and, for the first time, human DCs. Two formulations - [Rep/PEI-4,000 (1:3)] and [Rep/PEI-40,000 (1:2)/(Arg)9] were efficacious in vivo in mice and pigs, where specific CD8+ T and CD4+ T-cell responses against the GOI-encoded antigen were observed for the first time. The results demonstrate that different polyplex formulations differ in their interaction with the RepRNA such that only certain genes can be translated. Thus, delivery of these large self-replicating RNA molecules require definition with respect to translation of different genes, rather than just the GOI as is the norm, for identifying optimal delivery for the desired immune activation in vivo.


Assuntos
Polietilenoimina/administração & dosagem , RNA/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Animais , Antígenos/imunologia , Linhagem Celular , Peptídeos Penetradores de Células , Células Dendríticas , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peso Molecular , Ovalbumina/imunologia , Polietilenoimina/química , RNA/química , Ribonuclease H/química , Suínos , Linfócitos T/imunologia , Vacinas Sintéticas/química
11.
Vet Microbiol ; 201: 103-112, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28284595

RESUMO

In this study, we compared the virulence in weaner pigs of the Pinar del Rio isolate and the virulent Margarita strain. The latter caused the Cuban classical swine fever (CSF) outbreak of 1993. Our results showed that the Pinar del Rio virus isolated during an endemic phase is clearly of low virulence. We analysed the complete nucleotide sequence of the Pinar del Rio virus isolated after persistence in newborn piglets, as well as the genome sequence of the inoculum. The consensus genome sequence of the Pinar del Rio virus remained completely unchanged after 28days of persistent infection in swine. More importantly, a unique poly-uridine tract was discovered in the 3'UTR of the Pinar del Rio virus, which was not found in the Margarita virus or any other known CSFV sequences. Based on RNA secondary structure prediction, the poly-uridine tract results in a long single-stranded intervening sequence (SS) between the stem-loops I and II of the 3'UTR, without major changes in the stem- loop structures when compared to the Margarita virus. The possible implications of this novel insertion on persistence and attenuation remain to be investigated. In addition, comparison of the amino acid sequence of the viral proteins Erns, E1, E2 and p7 of the Margarita and Pinar del Rio viruses showed that all non-conservative amino acid substitutions acquired by the Pinar del Rio isolate clustered in E2, with two of them being located within the B/C domain. Immunisation and cross-neutralisation experiments in pigs and rabbits suggest differences between these two viruses, which may be attributable to the amino acid differences observed in E2. Altogether, these data provide fresh insights into viral molecular features which might be associated with the attenuation and adaptation of CSFV for persistence in the field.


Assuntos
Regiões 3' não Traduzidas/genética , Vírus da Febre Suína Clássica , Peste Suína Clássica/virologia , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/imunologia , Vírus da Febre Suína Clássica/isolamento & purificação , Vírus da Febre Suína Clássica/patogenicidade , Epitopos , Mutagênese Insercional , Coelhos , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária , Suínos , Uridina/genética , Virulência/genética
12.
Methods Mol Biol ; 1499: 37-75, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27987142

RESUMO

Most current vaccines are either inactivated pathogen-derived or protein/peptide-based, although attenuated and vector vaccines have also been developed. The former induce at best moderate protection, even as multimeric antigen, due to limitations in antigen loads and therefore capacity for inducing robust immune defense. While attenuated and vector vaccines offer advantages through their replicative nature, drawbacks and risks remain with potential reversion to virulence and interference from preexisting immunity. New advances averting these problems are combining self-amplifying replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (12-15 kb) derived from viral genomes defective in at least one structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitation with RepRNA is RNase-sensitivity and inefficient uptake by dendritic cells (DCs)-absolute requirements for efficacious vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Encapsulating RepRNA into chitosan nanoparticles, as well as condensing RepRNA with polyethylenimine (PEI), cationic lipids, or chitosans, has proven effective for delivery to DCs and induction of immune responses in vivo.


Assuntos
Células Dendríticas/imunologia , RNA/imunologia , Replicon/imunologia , Vacinas/imunologia , Animais , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Humanos , RNA/genética , Replicon/genética , Vacinas/genética
13.
J Immunol ; 197(12): 4791-4806, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27837108

RESUMO

Porcine dendritic cells (DCs) are relatively well characterized, but a clear-cut identification of all DC subsets combined with full transcriptional profiling was lacking, preventing an unbiased insight into the functional specializations of DC subsets. Using a large panel of Abs in multicolor flow cytometry, cell sorting, and RNA sequencing we identified and characterized the porcine equivalent of conventional DCs (cDC) 1 and cDC2 as well as plasmacytoid DCs (pDCs) in the peripheral blood of pigs. We demonstrate that cDC1 are CD135+CD14-CD172alowCADM1+wCD11R1+ cells, cDC2 are CD135+CD14-CD172a+CADM1+CD115+wCD11R1+CD1+ cells and pDCs are CD4+CD135+CD172a+CD123+CD303+ cells. As described in other species, only cDC1 express BATF3 and XCR1, cDC2 express FCER1A and FCGR2B, and only pDCs express TCF4 and NRP1 Nevertheless, despite these cross-species conserved subset-specific transcripts, porcine pDCs differed from the species described so far in many expressed genes and transcriptomic profiling clustered pDCs more distantly from cDCs than monocytes. The response of porcine DC subsets to TLR ligands revealed that pDCs are by far the most important source of TNF-α, IL-12p40, and of course IFN-α, whereas cDCs are most efficient in MHC and costimulatory molecule expression. Nevertheless, upregulation of CD40 and CD86 in cDCs was critically influenced or even dependent on the presence of pDCs, particularly for TLR 7 and 9 ligands. Our data demonstrate that extrapolation of data on DC biology from one species to another has to be done with care, and it shows how functional details have evolved differentially in different species.


Assuntos
Células Sanguíneas/fisiologia , Células Dendríticas/fisiologia , Especificidade da Espécie , Suínos/imunologia , Transcriptoma , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Separação Celular , Células Cultivadas , Citometria de Fluxo , Perfilação da Expressão Gênica , Interferon gama/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/imunologia , Fator de Necrose Tumoral alfa/metabolismo
14.
PLoS Negl Trop Dis ; 10(4): e0004678, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27128097

RESUMO

BACKGROUND: Buruli ulcer is a neglected tropical disease of the skin that is caused by infection with Mycobacterium ulcerans. We recently established an experimental pig (Sus scrofa) infection model for Buruli ulcer to investigate host-pathogen interactions, the efficacy of candidate vaccines and of new treatment options. METHODOLOGY/PRINCIPAL FINDINGS: Here we have used the model to study pathogenesis and early host-pathogen interactions in the affected porcine skin upon infection with mycolactone-producing and non-producing M. ulcerans strains. Histopathological analyses of nodular lesions in the porcine skin revealed that six weeks after infection with wild-type M. ulcerans bacteria extracellular acid fast bacilli were surrounded by distinct layers of neutrophils, macrophages and lymphocytes. Upon ulceration, the necrotic tissue containing the major bacterial burden was sloughing off, leading to the loss of most of the mycobacteria. Compared to wild-type M. ulcerans bacteria, toxin-deficient mutants caused an increased granulomatous cellular infiltration without massive tissue necrosis, and only smaller clusters of acid fast bacilli. CONCLUSIONS/SIGNIFICANCE: In summary, the present study shows that the pathogenesis and early immune response to M. ulcerans infection in the pig is very well reflecting BU disease in humans, making the pig infection model an excellent tool for the profiling of new therapeutic and prophylactic interventions.


Assuntos
Úlcera de Buruli/imunologia , Úlcera de Buruli/patologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Imunidade Celular , Mycobacterium ulcerans/imunologia , Animais , Histocitoquímica , Macrolídeos/metabolismo , Mycobacterium ulcerans/metabolismo , Pele/patologia , Suínos , Fatores de Virulência/metabolismo
15.
Nanomedicine ; 12(3): 711-722, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26592962

RESUMO

Self-amplifying replicon RNA (RepRNA) are large molecules (12-14 kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines. FROM THE CLINICAL EDITOR: The use of self-amplifying replicon RNA (RepRNA) to increase vaccine antigen payloads can potentially be useful in effective vaccine design. Nonetheless, its use is limited by the degradation during the uptake process. Here, the authors attempted to solve this problem by packaging RepRNA using polyethylenimine (PEI)-polyplex delivery vehicles. The efficacy was confirmed in vivo by the appropriate humoral and cellular immune responses. This novel delivery method may prove to be very useful for future vaccine design.


Assuntos
Antígenos/genética , Polietilenoimina/química , RNA/administração & dosagem , RNA/genética , Replicon , Vacinas/administração & dosagem , Vacinas/genética , Animais , Antígenos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos BALB C , Biossíntese de Proteínas , RNA/imunologia , RNA/farmacocinética , Suínos , Vacinas/imunologia , Vacinas/farmacocinética
16.
PLoS One ; 10(5): e0125692, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938664

RESUMO

It is well established that trans-placental transmission of classical swine fever virus (CSFV) during mid-gestation can lead to persistently infected offspring. The aim of the present study was to evaluate the ability of CSFV to induce viral persistence upon early postnatal infection. Two litters of 10 piglets each were infected intranasally on the day of birth with low and moderate virulence CSFV isolates, respectively. During six weeks after postnatal infection, most of the piglets remained clinically healthy, despite persistent high virus titres in the serum. Importantly, these animals were unable to mount any detectable humoral and cellular immune response. At necropsy, the most prominent gross pathological lesion was a severe thymus atrophy. Four weeks after infection, PBMCs from the persistently infected seronegative piglets were unresponsive to both, specific CSFV and non-specific PHA stimulation in terms of IFN-γ-producing cells. These results suggested the development of a state of immunosuppression in these postnatally persistently infected pigs. However, IL-10 was undetectable in the sera of the persistently infected animals. Interestingly, CSFV-stimulated PBMCs from the persistently infected piglets produced IL-10. Nevertheless, despite the addition of the anti-IL-10 antibody in the PBMC culture from persistently infected piglets, the response of the IFN-γ producing cells was not restored. Therefore, other factors than IL-10 may be involved in the general suppression of the T-cell responses upon CSFV and mitogen activation. Interestingly, bone marrow immature granulocytes were increased and targeted by the virus in persistently infected piglets. Taken together, we provided the first data demonstrating the feasibility of CSFV in generating a postnatal persistent disease, which has not been shown for other members of the Pestivirus genus yet. Since serological methods are routinely used in CSFV surveillance, persistently infected pigs might go unnoticed. In addition to the epidemiological and economic significance of persistent CSFV infection, this model could be useful for understanding the mechanisms of viral persistence.


Assuntos
Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/imunologia , Peste Suína Clássica/virologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes , Anticorpos Antivirais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/isolamento & purificação , Feminino , Granulócitos/imunologia , Granulócitos/metabolismo , Imunidade Celular , Imunidade Humoral , Interferon gama/biossíntese , Interferon gama/sangue , Interleucina-10/biossíntese , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Reação em Cadeia da Polimerase , Gravidez , Suínos , Carga Viral
17.
J Gen Virol ; 96(Pt 7): 1746-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25809915

RESUMO

The viral protein Npro is unique to the genus Pestivirus within the family Flaviviridae. After autocatalytic cleavage from the nascent polyprotein, Npro suppresses type I IFN (IFN-α/ß) induction by mediating proteasomal degradation of IFN regulatory factor 3 (IRF-3). Previous studies found that the Npro-mediated IRF-3 degradation was dependent of a TRASH domain in the C-terminal half of Npro coordinating zinc by means of the amino acid residues C112, C134, D136 and C138. Interestingly, four classical swine fever virus (CSFV) isolates obtained from diseased pigs in Thailand in 1993 and 1998 did not suppress IFN-α/ß induction despite the presence of an intact TRASH domain. Through systematic analyses, it was found that an amino acid mutation at position 40 or mutations at positions 17 and 61 in the N-terminal half of Npro of these four isolates were related to the lack of IRF-3-degrading activity. Restoring a histidine at position 40 or both a proline at position 17 and a lysine at position 61 based on the sequence of a functional Npro contributed to higher stability of the reconstructed Npro compared with the Npro from the Thai isolate. This led to enhanced interaction of Npro with IRF-3 along with its degradation by the proteasome. The results of the present study revealed that amino acid residues in the N-terminal domain of Npro are involved in the stability of Npro, in interaction of Npro with IRF-3 and subsequent degradation of IRF-3, leading to downregulation of IFN-α/ß production.


Assuntos
Vírus da Febre Suína Clássica/imunologia , Endopeptidases/química , Endopeptidases/imunologia , Interações Hospedeiro-Patógeno , Fatores Reguladores de Interferon/antagonistas & inibidores , Interferon Tipo I/antagonistas & inibidores , Proteínas Virais/química , Proteínas Virais/imunologia , Substituição de Aminoácidos , Animais , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/isolamento & purificação , Análise Mutacional de DNA , Regulação para Baixo , Endopeptidases/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Mutação de Sentido Incorreto , Ligação Proteica , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Suínos , Tailândia , Proteínas Virais/genética
18.
Virology ; 452-453: 303-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24606708

RESUMO

Pestivirus N(pro) is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N(pro) blocks the host׳s interferon response by inducing degradation of interferon regulatory factor-3. N(pro׳)s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N(pro)-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N(pro) proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N(pro׳)s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N(pro) does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus.


Assuntos
Pestivirus/enzimologia , Serina Endopeptidases/química , Proteínas Virais/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Modelos Moleculares , Dados de Sequência Molecular , Pestivirus/química , Pestivirus/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
PLoS Pathog ; 9(10): e1003704, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146623

RESUMO

Pestiviruses express their genome as a single polypeptide that is subsequently cleaved into individual proteins by host- and virus-encoded proteases. The pestivirus N-terminal protease (N(pro)) is a cysteine autoprotease that cleaves between its own C-terminus and the N-terminus of the core protein. Due to its unique sequence and catalytic site, it forms its own cysteine protease family C53. After self-cleavage, N(pro) is no longer active as a protease. The released N(pro) suppresses the induction of the host's type-I interferon-α/ß (IFN-α/ß) response. N(pro) binds interferon regulatory factor-3 (IRF3), the key transcriptional activator of IFN-α/ß genes, and promotes degradation of IRF3 by the proteasome, thus preventing induction of the IFN-α/ß response to pestivirus infection. Here we report the crystal structures of pestivirus N(pro). N(pro) is structurally distinct from other known cysteine proteases and has a novel "clam shell" fold consisting of a protease domain and a zinc-binding domain. The unique fold of N(pro) allows auto-catalysis at its C-terminus and subsequently conceals the cleavage site in the active site of the protease. Although many viruses interfere with type I IFN induction by targeting the IRF3 pathway, little information is available regarding structure or mechanism of action of viral proteins that interact with IRF3. The distribution of amino acids on the surface of N(pro) involved in targeting IRF3 for proteasomal degradation provides insight into the nature of N(pro)'s interaction with IRF3. The structures thus establish the mechanism of auto-catalysis and subsequent auto-inhibition of trans-activity of N(pro), and its role in subversion of host immune response.


Assuntos
Vírus da Febre Suína Clássica/enzimologia , Cisteína Proteases/química , Interferon Tipo I , Dobramento de Proteína , Animais , Catálise , Domínio Catalítico , Vírus da Febre Suína Clássica/genética , Cristalografia por Raios X , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Relação Estrutura-Atividade , Suínos
20.
Virology ; 438(2): 51-5, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23415391

RESUMO

Classical swine fever (CSF), a highly contagious disease of pigs caused by the classical swine fever virus (CSFV), can lead to important economic losses in the pig industry. Numerous CSFV isolates with various degrees of virulence have been isolated worldwide, ranging from low virulent strains that do not result in any apparent clinical signs to highly virulent strains that cause a severe peracute hemorrhagic fever with nearly 100% mortality. Knowledge of the molecular determinants of CSFV virulence is an important issue for effective disease control and development of safe and effective marker vaccines. In this review, the latest studies in the field of CSFV virulence are discussed. The topic of virulence is addressed from different angles; nonconventional approaches like codon pair usage and quasispecies are considered. Future research approaches in the field of CSFV virulence are proposed.


Assuntos
Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/patogenicidade , Peste Suína Clássica/virologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vírus da Febre Suína Clássica/imunologia , Glicosilação , Suínos/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA