Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35050056

RESUMO

An efficient in vitro morphogenesis, specifically through somatic embryogenesis, is considered to be a crucial step for the application of modern biotechnological tools for genetic improvement in olive (Olea europaea L.). The effects of different ethylene inhibitors, i.e., cobalt chloride (CoCl2), salicylic acid (SA), and silver nitrate (AgNO3), were reported in the cyclic somatic embryogenesis of olive. Embryogenic callus derived from the olive immature zygotic embryos of the cultivar Leccino, was transferred to the expression ECO medium, supplemented with the ethylene inhibitors at 20 and 40 µM concentrations. Among these, the maximum number of somatic embryos (18.6) was obtained in media containing silver nitrate (40 µM), followed by cobalt chloride (12.2 somatic embryos @ 40 µM) and salicylic acid (40 µM), which produced 8.5 somatic embryos. These compounds interfered on callus traits: white friable embryogenic calli were formed in a medium supplemented with 40 µM cobalt chloride and salicylic acid; in addition, a yellow-compact embryogenic callus appeared at 20 µM of all the tested ethylene inhibitors. The resulting stimulatory action of silver nitrate among all the tested ethylene inhibitors on somatic embryogenesis, clearly demonstrates that our approach can efficiently contribute to the improvement of the current SE protocols for olive.

2.
Plants (Basel) ; 10(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673090

RESUMO

Global warming has two dangerous global consequences for agriculture: drought, due to water scarcity, and salinization, due to the prolonged use of water containing high concentrations of salts. Since the global climate is projected to continue to change over this century and beyond, choosing salt-tolerant plants could represent a potential paramount last resort for exploiting the secondary saline soils. Olive is considered moderately resistant to soil salinity as compared to other fruit trees, and in the present study, we investigated the influence of NaCl solutions (ranging from 0 to 200 mM) in a salt-tolerant (cv Canino) and two of its transgenic lines (Canino AT17-1 and Canino AT17-2), overexpressing tobacco osmotin gene, and in a salt-sensitive (Sirole) olive cultivar. After four weeks, most of the shoots of both Canino and Sirole plants showed stunted growth and ultimate leaf drop by exposure to salt-enriched media, contrary to transgenic lines, that did not show injuries and exhibited a normal growth rate. Malondialdehyde (MDA) content was also measured as an indicator of the lipid peroxidation level. To evaluate the role of the S assimilatory pathway in alleviating the adverse effects of salt stress, thiols levels as well as extractable activities of ATP sulfurylase (ATPS) and O-acetyl serine(thiol)lyase (OASTL), the first and the last enzyme of the S assimilation pathway, respectively, have been estimated. The results have clearly depicted that both transgenic lines overexpressing osmotin gene coped with increasing levels of NaCl by the induction of S metabolism, and particularly increase in OASTL activity closely paralleled changes of NaCl concentration. Linear correlation between salt stress and OASTL activity provides evidence that the S assimilation pathway plays a key role in adaptive response of olive plants under salt stress conditions.

3.
Plants (Basel) ; 9(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759884

RESUMO

Research on biologically active compounds has been increased in order to improve plant protection against various environmental stresses. Among natural sources, plants are the fundamental material for studying these bioactive compounds as their immune system consists of many peptides, proteins, and hormones. Osmotin is a multifunctional stress-responsive protein belonging to pathogenesis-related 5 (PR-5) defense-related protein family, which is involved in inducing osmo-tolerance in plants. In this scenario, the accumulation of osmotin initiates abiotic and biotic signal transductions. These proteins work as antifungal agents against a broad range of fungal species by increasing plasma membrane permeability and dissipating the membrane potential of infecting fungi. Therefore, overexpression of tobacco osmotin protein in transgenic plants protects them from different stresses by reducing reactive oxygen species (ROS) production, limiting lipid peroxidation, initiating programmed cell death (PCD), and increasing proline content and scavenging enzyme activity. Other than osmotin, its homologous proteins, osmotin-like proteins (OLPs), also have dual function in plant defense against osmotic stress and have strong antifungal activity.

4.
J Plant Physiol ; 165(7): 734-44, 2008 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-17765360

RESUMO

Salicylic acid (SA), ethylene (ET), and wounding are all known to influence plant defense response. Experiments attempting to determine SA's relation to ET biosynthesis and defense gene expression have shown conflicting results. To confront this, we developed an in vitro model system to investigate how SA affects ET biosynthesis, hydrogen peroxide (H(2)O(2)) production and endochitinase gene expression in the European chestnut. ET measurements of in vitro shoots indicated a critical time point for SA exogenous application, enabling us to study its effects independent of ET. In addition, ET measurements demonstrated that its own increased biosynthesis was a response to wounding but not to SA treatment. Application of the ET biosynthesis inhibitor, aminoethoxyvinylglycine (AVG), on wounded and SA-treated shoots blocked wounding-induced ET production. Interestingly, SA inhibited ET production, but to a lesser extent than AVG. Additionally, SA also induced the accumulation of endochitinase transcript level. Likewise, a sensitive tissue-print assay showed that SA further increased the level of H(2)O(2). Yet, SA-induced endochitinase gene expression and SA-enhanced H(2)O(2) production levels were independent of ET. The cumulative results indicate that SA acts as an inducer of endochitinase PR gene expression and of H(2)O(2) oxidative burst. This suggests that SA is a component of the signal transduction pathway leading to defense against pathogens in chestnut. Further, the model system developed for this experiment should facilitate the deciphering of defense signaling pathways and their cross-talk. Moreover, it should also benefit the study of trees of long generation time that are known to be recalcitrant to in vitro studies.


Assuntos
Quitinases/genética , Etilenos/biossíntese , Fagaceae/enzimologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Ácido Salicílico/farmacologia , Meios de Cultura , Fagaceae/genética , Glicina/análogos & derivados , Glicina/farmacologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA