Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Microbiol Immunol Hung ; 71(3): 237-241, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39078704

RESUMO

Klebsiella pneumoniae is an opportunistic pathogen and it can cause human mucosal lesions through the intestine, leading to bacteremia and abscess formation in liver and spleen. Previous studies have shown that K. pneumoniae can enter or cross cells through the intestinal epithelium, but the mechanism is unknown. In this study, we treated the intestinal epithelial cell line Caco-2 with KP1195, a clinically isolated strain with high adhesion and invasion of intestinal epithelial cells. The results showed that the treatment of K. pneumoniae could increase the expression of integrin gene and further disrupt the changes of cytoskeleton. Treating Caco-2 with cytoskeletal inhibitor cytorelaxin D can significantly increase the efficiency of K. pneumoniae invading Caco-2 cells. These data suggest that disruption of the cytoskeleton through integrins may be one of the mechanisms by which K. pneumoniae increases intracellular invasion. This study provides a theoretical basis for further understanding of the mechanism of K. pneumoniae entering intestinal epithelial cells.


Assuntos
Citoesqueleto , Células Epiteliais , Mucosa Intestinal , Klebsiella pneumoniae , Klebsiella pneumoniae/fisiologia , Humanos , Células CACO-2 , Citoesqueleto/metabolismo , Células Epiteliais/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/citologia , Infecções por Klebsiella/microbiologia , Integrinas/metabolismo , Integrinas/genética , Aderência Bacteriana
2.
Mediators Inflamm ; 2022: 5188895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570020

RESUMO

Background: Klebsiella pneumoniae (K. pneu) is a leading cause of gram-negative pneumonia, which requires effective treatment. Adipose-derived mesenchymal stem cell- (ADSC-) derived exosomal microRNAs (miRNAs) have presented the inhibitory effect of multiple diseases. However, the function of ADSC-derived exosomal miRNAs in K. pneu remains unclear. Aim: In this study, we aimed to explore the effect of ADSC-derived exosomal miR-181-5p on K. pneu infection-induced lung injury. Methods: C57BL/6 mouse model was established by infection of K. pneu. ADSCs and exosomes were extracted and characterized in vitro. The translocation of ADSC-derived exosomes to bone marrow-derived macrophages (BMDMs) was detected. The level of miR-181a-5p was detected by real-time PCR. The secretion of inflammatory factors was determined by ELISA. The interaction between miR-181a-5p with STAT3 was identified. Results: We successfully isolated the ADSCs that express positive markers CD90 and CD105 rather than CD31 and CD45. The exosomal miR-181a-5p secreted by ADSCs were internalized by BMDM and K. pneu infection stimulated the miR-181a-5p level in bronchoalveolar lavage fluid (BALF) and BMDM. ADSC-derived exosomal miR-181a-5p repressed pulmonary outgrowth and dissemination of K. pneu infection in mice, repressed cellular infiltration in lung tissue, and attenuated the inflammasome activity and the levels of IL-1ß and IL-18 in the lung. Mechanically, miR-181a-5p was able to inhibit STAT3 expression at posttranscriptional levels and repressed Nlrp3 and Asc expression in BMDM. Conclusion: Consequently, we concluded that ADSC-derived exosomal miR-181a-5p alleviated Klebsiella pneumonia infection-induced lung injury by targeting STAT3 signaling. ADSC-derived exosomal miR-181a-5p may serve as a potential candidate for the treatment of Klebsiella pneumonia infection-induced lung injury.


Assuntos
Exossomos , Lesão Pulmonar , Células-Tronco Mesenquimais , MicroRNAs , Pneumonia , Camundongos , Animais , Klebsiella pneumoniae/metabolismo , Exossomos/metabolismo , Lesão Pulmonar/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pneumonia/metabolismo
3.
Biotechnol Appl Biochem ; 69(5): 2091-2101, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34664729

RESUMO

By studying the expression in patients and cell modeling in vitro, antimicrobial peptides for Klebsiella were screened. Killing curve and membrane permeability experiments are used to study the antibacterial effect of antimicrobial peptides in vitro. Cytotoxicity-related indicators including lipopolysaccharide (LPS), capsule polysaccharide (CPS), and outer membrane protein expression were measured. Intranasal inoculation of pneumoconiosis was used to construct a mouse infection model, and the survival rate and cytokine expression level were tested. Human neutrophil peptide 1 (HNP-1) showed a significant antibacterial effect, which improved the permeability of the outer membrane of K. pneumoniae. Moreover, HNP-1 decreased LPS, CPS content, and outer membrane proteins. K. pneumoniae infection decreased antimicrobial peptide, oxidative stress, and autophagy-related genes, while HNP-1 increased these genes. After coculture with macrophages, the endocytosis of macrophages is enhanced and the bacterial load is greater in the K. pneumoniae + peptide group. Besides, higher levels of pp38 and pp65 in the K. pneumoniae + peptide group. HNP-1 rescued the cytotoxicity induced by K. pneumoniae. The survival rate is significantly improved after K. pneumoniae is treated by HNP-1. All cytokines in the peptide group were significantly higher. HNP-1 promotes immune sterilization by reducing the virulence of multidrug-resistant K. pneumoniae and increasing the ability of macrophages.


Assuntos
Klebsiella pneumoniae , Lipopolissacarídeos , Animais , Humanos , Camundongos , Antibacterianos/metabolismo , Klebsiella pneumoniae/metabolismo , Macrófagos , Esterilização , Virulência , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA