Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Heart J Imaging Methods Pract ; 2(1): qyae035, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39045181

RESUMO

Aims: A comparison of diagnostic performance comparing AI-QCTISCHEMIA, coronary computed tomography angiography using fractional flow reserve (CT-FFR), and physician visual interpretation on the prediction of invasive adenosine FFR have not been evaluated. Furthermore, the coronary plaque characteristics impacting these tests have not been assessed. Methods and results: In a single centre, 43-month retrospective review of 442 patients referred for coronary computed tomography angiography and CT-FFR, 44 patients with CT-FFR had 54 vessels assessed using intracoronary adenosine FFR within 60 days. A comparison of the diagnostic performance among these three techniques for the prediction of FFR ≤ 0.80 was reported. The mean age of the study population was 65 years, 76.9% were male, and the median coronary artery calcium was 654. When analysing the per-vessel ischaemia prediction, AI-QCTISCHEMIA had greater specificity, positive predictive value (PPV), diagnostic accuracy, and area under the curve (AUC) vs. CT-FFR and physician visual interpretation CAD-RADS. The AUC for AI-QCTISCHEMIA was 0.91 vs. 0.76 for CT-FFR and 0.62 for CAD-RADS ≥ 3. Plaque characteristics that were different in false positive vs. true positive cases for AI-QCTISCHEMIA were max stenosis diameter % (54% vs. 67%, P < 0.01); for CT-FFR were maximum stenosis diameter % (40% vs. 65%, P < 0.001), total non-calcified plaque (9% vs. 13%, P < 0.01); and for physician visual interpretation CAD-RADS ≥ 3 were total non-calcified plaque (8% vs. 12%, P < 0.01), lumen volume (681 vs. 510 mm3, P = 0.02), maximum stenosis diameter % (40% vs. 62%, P < 0.001), total plaque (19% vs. 33%, P = 0.002), and total calcified plaque (11% vs. 22%, P = 0.003). Conclusion: Regarding per-vessel prediction of FFR ≤ 0.8, AI-QCTISCHEMIA revealed greater specificity, PPV, accuracy, and AUC vs. CT-FFR and physician visual interpretation CAD-RADS ≥ 3.

2.
BMC Cardiovasc Disord ; 21(1): 294, 2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120592

RESUMO

BACKGROUND: Although systemic lupus erythematosus (SLE) can affect the cardiovascular system in many ways with diverse presentations, a severe cardiogenic shock secondary to SLE myocarditis is infrequently described in the medical literature. Variable presenting features of SLE myocarditis can also make the diagnosis challenging. This case report will allow learners to consider SLE myocarditis in the differential and appreciate the diagnostic uncertainty. CASE PRESENTATION: A 20-year-old Filipino male presented with acute dyspnea, pleuritic chest pain, fevers, and diffuse rash after being diagnosed with SLE six months ago and treated with hydroxychloroquine. Labs were notable for leukopenia, non-nephrotic range proteinuria, elevated cardiac biomarkers, inflammatory markers, low complements, and serologies suggestive of active SLE. Broad-spectrum IV antibiotics and corticosteroids were initiated for sepsis and SLE activity. Blood cultures were positive for MSSA with likely skin source. An electrocardiogram showed diffuse ST-segment elevations without ischemic changes. CT chest demonstrated bilateral pleural and pericardial effusions with dense consolidations. Transthoracic and transesophageal echocardiogram demonstrated reduced left ventricular ejection fraction (LVEF) 45% with no valvular pathology suggestive of endocarditis. Although MSSA bacteremia resolved, the patient rapidly developed cardiopulmonary decline with a repeat echocardiogram demonstrating LVEF < 10%. A Cardiac MRI was a nondiagnostic study to elucidate an etiology of decompensation given inability to perform late gadolinium enhancement. Later, cardiac catheterization revealed normal cardiac output with non-obstructive coronary artery disease. As there was no clear etiology explaining his dramatic heart failure, endomyocardial biopsy was obtained demonstrating diffuse myofiber degeneration and inflammation. These pathological findings, in addition to skin biopsy demonstrating lichenoid dermatitis with a granular "full house" pattern was most consistent with SLE myocarditis. Furthermore, aggressive SLE-directed therapy demonstrated near full recovery of his heart failure. CONCLUSION: Although myocarditis during SLE flare is a well-described cardiac manifestation, progression to cardiogenic shock is infrequent and fatal. As such, SLE myocarditis should be promptly considered. Given the heterogenous presentation of SLE, combination of serologic evaluation, advanced imaging, and myocardial biopsies can be helpful when diagnostic uncertainty exists. Our case highlights diagnostic methods and clinical course of a de novo presentation of cardiogenic shock from SLE myocarditis, then rapid improvement.


Assuntos
Lúpus Eritematoso Sistêmico/complicações , Miocardite/etiologia , Choque Cardiogênico/etiologia , Diagnóstico Diferencial , Humanos , Imunossupressores/uso terapêutico , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Masculino , Miocardite/diagnóstico , Miocardite/tratamento farmacológico , Fatores de Risco , Choque Cardiogênico/diagnóstico , Choque Cardiogênico/tratamento farmacológico , Resultado do Tratamento , Adulto Jovem
3.
Heart Views ; 19(1): 23-26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29876028

RESUMO

Exposure to radiotherapy has been shown to accelerate myocardial damage or injury to the cardiac vasculature. Accelerated coronary artery disease (CAD) is one of the main manifestations of cardiac disease in patients who undergo mediastinal radiation therapy. We present the cases of three young patients who developed severe CAD secondary to remote mediastinal radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA