Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Dent Mater ; 40(8): 1296-1304, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871528

RESUMO

OBJECTIVE: To evaluate whether nanoparticles (NPs) functionalized with Tideglusib (TDg, NP-12), and deposited on titanium surfaces, would counteract the effect of bacterial lipopolysaccharide (LPS) on osteoblasts. METHODS: Experimental groups were: (a) Titanium discs (TiD), (b) TiD covered with undoped NPs (Un-NPs) and (c) TiD covered with TDg-doped NPs (TDg-NPs). Human primary osteoblasts were cultured onto these discs, in the presence or absence of bacterial LPS. Cell proliferation was assessed by MTT-assay and differentiation by measuring the alkaline phosphatase activity. Mineral nodule formation was assessed by the alizarin red test. Real-time quantitative polymerase chain reaction was used to study the expression of Runx-2, OSX, ALP, OSC, OPG, RANKL, Col-I, BMP-2, BMP-7, TGF-ß1, VEGF, TGF-ßR1, TGF-ßR2, and TGF-ßR3 genes. Osteoblasts morphology was studied by Scanning Electron Microscopy. One-way ANOVA or Kruskal-Wallis and Bonferroni multiple comparisons tests were carried out (p < 0.05). RESULTS: TDg-NPs enhanced osteoblasts proliferation. Similarly, this group increased ALP production and mineral nodules formation. TDg-NPs on titanium discs resulted in overexpression of the proliferative genes, OSC and OSX, regardless of LPS activity. In the absence of LPS, TDg-NPs up-regulated Runx2, COL-I, ALP, BMP2 and BMP7 genes. OPG/RANKL gene ratios were increased about 2500 and 4,000-fold by TDg-NPs, when LPS was added or not, respectively. In contact with the TDg-NPs osteoblasts demonstrated an elongated spindle-shaped morphology with extracellular matrix production. SIGNIFICANCE: TDg-NPs on titanium discs counteracted the detrimental effect of LPS by preventing the decrease on osteoblasts proliferation and mineralization, and produced an overexpression of proliferative and bone-promoting genes on human primary osteoblasts.


Assuntos
Proliferação de Células , Lipopolissacarídeos , Nanopartículas , Osteoblastos , Titânio , Osteoblastos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Humanos , Nanopartículas/química , Titânio/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fosfatase Alcalina/metabolismo , Propriedades de Superfície , Diferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Microscopia Eletrônica de Varredura
2.
Genes (Basel) ; 15(2)2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397163

RESUMO

Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor ß1 (TGF-ß1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFßR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.


Assuntos
Aldeídos , Monoterpenos Ciclopentânicos , Fenóis , Álcool Feniletílico/análogos & derivados , Óleos de Plantas , Fator A de Crescimento do Endotélio Vascular , Humanos , Azeite de Oliva/farmacologia , Óleos de Plantas/análise , Biomarcadores , Antígenos de Diferenciação , Proliferação de Células , Fibroblastos , Expressão Gênica
3.
Nutrients ; 15(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432217

RESUMO

Fibroblasts contribute to maintaining tissue integrity and homeostasis and are a key cell population in wound healing. This cell population can be stimulated by some bioactive compounds such as extra virgin olive oil (EVOO) polyphenols. The aim of this study was to determine the effects of hydroxytyrosol (htyr), tyrosol (tyr), and oleocanthal (ole) phenolic compounds present in EVOO on the proliferation, migration, cell cycle, and antigenic profile of cultured human fibroblasts. CCD-1064Sk human fibroblast cells were treated for 24 h with each polyphenol at doses ranging 10-5 to 10-9 M. Cell proliferation was evaluated using the MTT spectrophotometric technique, migration capacity by culture insert assay, and cell cycle and antigenic profile with flow cytometry. Cell proliferation was significantly increased by treatment with all compounds. The highest increases followed treatments with htyr or tyr at doses of 10-5 or 10-6 M and with ole at 10-6 and 10-7 M, and these compounds and doses were used for assays of antigenic profile, cell cycle, and migration. During the first few hours after treatment, increased fibronectin and α-actin expressions and greater cell migration were observed, with no cell cycle changes. In conclusion, these in vitro results suggest that phenolic compounds in EVOO might contribute to wound healing through action on fibroblasts related to tissue regeneration.


Assuntos
Fibroblastos , Polifenóis , Humanos , Azeite de Oliva/farmacologia
4.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901687

RESUMO

Bone effects attributed to bisphenols (BPs) include the inhibition of growth and differentiation. This study analyzes the effect of BPA analogs (BPS, BPF, and BPAF) on the gene expression of the osteogenic markers RUNX2, osterix (OSX), bone morphogenetic protein-2 (BMP-2), BMP-7, alkaline phosphatase (ALP), collagen-1 (COL-1), and osteocalcin (OSC). Human osteoblasts were obtained by primary culture from bone chips harvested during routine dental work in healthy volunteers and were treated with BPF, BPS, or BPAF for 24 h at doses of 10-5, 10-6, and 10-7 M. Untreated cells were used as controls. Real-time PCR was used to determine the expression of the osteogenic marker genes RUNX2, OSX, BMP-2, BMP-7, ALP, COL-1, and OSC. The expression of all studied markers was inhibited in the presence of each analog; some markers (COL-1; OSC, BMP2) were inhibited at all three doses and others only at the highest doses (10-5 and 10-6 M). Results obtained for the gene expression of osteogenic markers reveal an adverse effect of BPA analogs (BPF, BPS, and BPAF) on the physiology of human osteoblasts. The impact on ALP, COL-1, and OSC synthesis and therefore on bone matrix formation and mineralization is similar to that observed after exposure to BPA. Further research is warranted to determine the possible contribution of BP exposure to the development of bone diseases such as osteoporosis.


Assuntos
Proteína Morfogenética Óssea 7 , Subunidade alfa 1 de Fator de Ligação ao Core , Humanos , Proteína Morfogenética Óssea 7/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese , Expressão Gênica , Compostos Benzidrílicos/farmacologia
5.
J Periodontal Res ; 58(2): 296-307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36585537

RESUMO

OBJECTIVE: The aim of the study was to evaluate the effect of doxycycline- and dexamethasone-doped collagen membranes on the proliferation and differentiation of osteoblasts. BACKGROUND: Collagen barrier membranes are frequently used to promote bone regeneration and to boost this biological activity their functionalization with antibacterial and immunomodulatory substances has been suggested. METHODS: The design included commercially available collagen membranes doped with doxycycline (Dox-Col-M) or dexamethasone (Dex-Col-M), as well as undoped membranes (Col-M) as controls, which were placed in contact with cultured MG63 osteoblast-like cells (ATCC). Cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay and differentiation by measuring the alkaline phosphatase (ALP) activity using spectrophotometry. Real-time quantitative polymerase chain reaction was used to study the expression of the genes: Runx-2, OSX, ALP, OSC, OPG, RANKL, Col-I, BMP-2, BMP-7, TGF-ß1, VEGF, TGF-ßR1, TGF-ßR2, and TGF-ßR3. Scanning electron microscopy was used to study osteoblast morphology. Data were assessed using one-way analysis of variance or Kruskal-Wallis tests, once their distribution normality was assessed by Kolmogorov-Smirnov tests (p > .05). Bonferroni for multiple comparisons were carried out (p < .05). RESULTS: Osteoblast proliferation was significantly enhanced in the functionalized membranes as follows: (Col-M < Dex-Col-M < Dox-Col-M). ALP activity was significantly higher on cultured osteoblasts on Dox-Col-M. Runx-2, OSX, ALP, OSC, BMP-2, BMP-7, TGF-ß1, VEGF, TGF-ßR1, TGF-ßR2, and TGF-ßR3 were overexpressed, and RANKL was down-regulated in osteoblasts cultured on Dox-Col-M. The osteoblasts cultured in contact with the functionalized membranes demonstrated an elongated spindle-shaped morphology. CONCLUSION: The functionalization of collagen membranes with Dox promoted an increase in the proliferation and differentiation of osteoblasts.


Assuntos
Proteína Morfogenética Óssea 7 , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Doxiciclina/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Diferenciação Celular , Colágeno/farmacologia , Colágeno/metabolismo , Osteoblastos , Proliferação de Células , Dexametasona/farmacologia , Fosfatase Alcalina/metabolismo
6.
Biomimetics (Basel) ; 9(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38248578

RESUMO

To counteract the effect of zoledronate and decrease the risk of osteonecrosis of the jaw (BRONJ) development in patients undergoing guided bone regeneration surgery, the use of geranylgeraniol (GGOH) has been proposed. Collagen membranes may act as biomimetical drug carriers. The objective of this study was to determine the capacity of collagen-based membranes doped with GGOH to revert the negative impact of zoledronate on the growth and differentiation of human osteoblasts. MG-63 cells were cultured on collagen membranes. Two groups were established: (1) undoped membranes and (2) membranes doped with geranylgeraniol. Osteoblasts were cultured with or without zoledronate (50 µM). Cell proliferation was evaluated at 48 h using the MTT colorimetric method. Differentiation was tested by staining mineralization nodules with alizarin red and by gene expression analysis of bone morphogenetic proteins 2 and 7, alkaline phosphatase (ALP), bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7), type I collagen (Col-I), osterix (OSX), osteocalcin (OSC), osteoprotegerin (OPG), receptor for RANK (RANKL), runt-related transcription factor 2 (Runx-2), TGF-ß1 and TGF-ß receptors (TGF-ßR1, TGF-ßR2, and TGF-ßR3), and vascular endothelial growth factor (VEGF) with real-time PCR. One-way ANOVA or Kruskal-Wallis and post hoc Bonferroni tests were applied (p < 0.05). Scanning electron microscopy (SEM) observations were also performed. Treatment of osteoblasts with 50 µM zoledronate produced a significant decrease in cell proliferation, mineralization capacity, and gene expression of several differentiation markers if compared to the control (p < 0.001). When osteoblasts were treated with zoledronate and cultured on GGOH-doped membranes, these variables were, in general, similar to the control group (p > 0.05). GGOH applied on collagen membranes is able to reverse the negative impact of zoledronate on the proliferation, differentiation, and gene expression of different osteoblasts' markers.

7.
Food Funct ; 13(5): 2415-2426, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35174827

RESUMO

Garlic is one of the most widely employed condiments in cooking. It has also been used since ancient times in traditional plant-based medicine, largely based on its organosulfur compounds. The objective of this study was to provide updated information on the biological and therapeutic garlic properties. Garlic has been found to possess important biological properties with high therapeutic potential, which is influenced by the mode of its utilization, preparation, and extraction. It has been attributed with antioxidant, anti-inflammatory, and immunomodulatory capacities. Garlic, in particular its organosulfur compounds, can maintain immune system homeostasis through positive effects on immune cells, especially by regulating cytokine proliferation and expression. This may underlie their usefulness in the treatment of infectious and tumor processes. These compounds can also offer vascular benefits by regulating lipid metabolism or by exerting antihypertensive and antiaggregant effects. However, further clinical trials are warranted to confirm the therapeutic potential of garlic and its derivatives.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Alimento Funcional , Alho , Humanos
8.
J Cell Mol Med ; 26(1): 178-185, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854223

RESUMO

Mesenchymal stromal cells (MSCs) have evidenced considerable therapeutic potential in numerous clinical fields, especially in tissue regeneration. The immunological characteristics of this cell population include the expression of Toll-like receptors and mannose receptors, among others. The study objective was to determine whether MSCs have phagocytic capacity against different target particles. We isolated and characterized three human adipose tissue MSC (HAT-MSC) lines from three patients and analysed their phagocytic capacity by flow cytometry, using fluorescent latex beads, and by transmission electron microscopy, using Escherichia coli, Staphylococcus aureus and Candida albicans as biological materials and latex beads as non-biological material. The results demonstrate that HAT-MSCs can phagocyte particles of different nature and size. The percentage of phagocytic cells ranged between 33.8% and 56.2% (mean of 44.37% ± 11.253) according to the cell line, and a high phagocytic index was observed. The high phagocytic capacity observed in MSCs, which have known regenerative potential, may offer an advance in the approach to certain local and systemic infections.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Fagocitose , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fagócitos/citologia
9.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830096

RESUMO

Oral squamous cell carcinoma (OSCC) is the most prevalent oral malignant tumor worldwide. An early diagnosis can have a major positive impact on its prognosis. Human saliva contains cytokines, DNA and RNA molecules, circulating cells, and derivatives of tissues and extracellular vesicles, among other factors that can serve as biomarkers. Hence, the analysis of saliva may provide useful information for the early diagnosis of OSCC for its prognosis. The objective of this review was to determine the potential usefulness of salivary biomarkers (cytokines and microRNA) to diagnose OSCC and improve its prognosis. A combination of salivary miRNA and proteomic data could allow a definitive and early diagnosis to be obtained. However, there remains a need to optimize and standardize the protocols used to quantify miRNAs.


Assuntos
Biomarcadores Tumorais/metabolismo , Citocinas/metabolismo , MicroRNAs/metabolismo , Neoplasias Bucais , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
10.
Life (Basel) ; 11(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34575073

RESUMO

Amoebiasis in humans is caused by the protozoan parasite Entamoeba histolytica, which cytotoxic activity has been demonstrated on a wide variety of target cells. The process involves the adherence of the parasite to the cell, and such adherence is mediated by an amoebic surface lectin, known as Gal/GalNAc lectin. It is composed of heavy, intermediate, and light subunits. The carbohydrate recognition domain (CRD) has been identified within a cysteine-rich region in the lectin heavy subunit and has an amino acid sequence identity to the receptor-binding domain of hepatocyte growth factor (HGF). Recombinant CRD has been previously shown to compete with HGF for binding to the c-Met receptor IgG fusion protein. In the present study, we searched for evidence of interaction between the Gal/GalNAc lectin at the surface of trophozoites with the c-Met receptor expressed at the surface of HepG2 in coculture assays. Immunoprecipitation of the coculture lysate indicated interaction of the c-Met with a 60 kDa peptide recognized by antiamoebic lectin antibody. Colocalization of both molecules was detected by fluorescence confocal microscopy. Incubation of HepG2 cells with HGF before coculture with trophozoites prevents the cytotoxic effect caused by the parasites but not their adherence to the cells. Our results point to Gal/GalNAc lectin as a ligand of the c-Met receptor at the surface of HepG2 cells.

11.
J Tissue Viability ; 30(3): 372-378, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33810929

RESUMO

Some micronutrients of vegetable origin are considered potentially useful as wound-healing agents because they can increase fibroblast proliferation and differentiation. THE AIM OF THIS STUDY: was to evaluate the regenerative effects of selected olive oil phenolic compounds on cultured human fibroblasts and explore their antimicrobial properties. MATERIAL AND METHODS: The CCD-1064Sk fibroblast line was treated for 24 h with 10-6M luteolin, apigenin, ferulic, coumaric acid or caffeic acid, evaluating the effects on cell proliferation by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) spectrophotometric assay; the migratory capacity by the scratch assay and determining the expression of Fibroblast Growth Factor (FGF), Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor- ß1 (TGFß1), Platelet Derived Growth Factor (PDGF), and Collagen Type I (COL-I) genes by real-time polymerase chain reaction. The antimicrobial capacity of the polyphenols was evaluated by the disc diffusion method. RESULTS: All compounds except for ferulic acid significantly stimulated the proliferative capacity of fibroblasts, increasing their migration and their expression of the aforementioned genes. With respect to their antimicrobial properties, treatment with the studied compounds inhibited the growth of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Proteus spp., and Candida Albicans. CONCLUSIONS: The phenolic compounds in olive oil have a biostimulatory effect on the regeneration capacity, differentiation, and migration of fibroblasts and exert major antibacterial activity. According to the present findings, these compounds may have a strong therapeutic effect on wound recovery.


Assuntos
Anti-Infecciosos/farmacologia , Fibroblastos/efeitos dos fármacos , Azeite de Oliva/farmacologia , Regeneração/efeitos dos fármacos , Anti-Infecciosos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Humanos , Azeite de Oliva/administração & dosagem
12.
Diagnostics (Basel) ; 11(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401557

RESUMO

Fibromyalgia (FM) is a highly prevalent syndrome that impairs the quality of life of the patients; however, its diagnosis is complex and mainly centered on pain symptoms. The study of salivary biomarkers has proven highly useful for the diagnosis and prognosis of numerous diseases. The objective of this review was to gather published data on the utilization of salivary biomarkers to facilitate and complement the diagnosis of FM. Salivary biomarkers used in FM diagnosis include cortisol; calgranulin; and the enzymes α-amylase, transaldolase, and phosphoglycerate mutase. Increased serum levels of C-reactive protein, cytokines interleukin 1-ß, interleukin 6, interleukin 8, interleukin 10, interleukin 17, tumor necrosis factor α, and various chemokines may serve as salivary biomarkers, given observations of their increased serum levels in patients with FM. Further research is warranted to study in depth the role and performance of biomarkers currently used in FM diagnosis/prognosis and to identify novel salivary biomarkers for this disease.

13.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708341

RESUMO

Saliva is a highly versatile biological fluid that is easy to gather in a non-invasive manner-and the results of its analysis complement clinical and histopathological findings in the diagnosis of multiple diseases. The objective of this review was to offer an update on the contribution of salivary biomarkers to the diagnosis and prognosis of diseases of the oral cavity, including oral lichen planus, periodontitis, Sjögren's syndrome, oral leukoplakia, peri-implantitis, and medication-related osteonecrosis of the jaw. Salivary biomarkers such as interleukins, growth factors, enzymes, and other biomolecules have proven useful in the diagnosis and follow-up of these diseases, facilitating the early evaluation of malignization risk and the monitoring of disease progression and response to treatment. However, further studies are required to identify new biomarkers and verify their reported role in the diagnosis and/or prognosis of oral diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucinas/metabolismo , Boca/metabolismo , Saliva/metabolismo , Biomarcadores/metabolismo , Humanos , Leucoplasia Oral/diagnóstico , Leucoplasia Oral/enzimologia , Leucoplasia Oral/metabolismo , Líquen Plano Bucal/diagnóstico , Líquen Plano Bucal/enzimologia , Líquen Plano Bucal/metabolismo , Boca/enzimologia , Boca/patologia , Osteonecrose/diagnóstico , Osteonecrose/enzimologia , Osteonecrose/metabolismo , Peri-Implantite/diagnóstico , Peri-Implantite/enzimologia , Peri-Implantite/metabolismo , Periodontite/diagnóstico , Periodontite/enzimologia , Periodontite/metabolismo , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/enzimologia , Síndrome de Sjogren/metabolismo
14.
Int J Med Sci ; 16(11): 1466-1472, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673238

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs), including cyclooxygenase-2 (COX-2)-selective NSAIDs, are associated with adverse effects on bone tissue. These drugs are frequently the treatment of choice but are the least studied with respect to their repercussion on bone. The objective of this study was to determine the effects of celecoxib on cultured human osteoblasts. Human osteoblasts obtained by primary culture from bone samples were treated with celecoxib at doses of 0.75, 2, or 5µM for 24 h. The MTT technique was used to determine the effect on proliferation; flow cytometry to establish the effect on cell cycle, cell viability, and antigenic profile; and real-time polymerase chain reaction to measure the effect on gene expressions of the differentiation markers RUNX2, alkaline phosphatase (ALP), osteocalcin (OSC), and osterix (OSX). Therapeutic doses of celecoxib had no effect on osteoblast cell growth or antigen expression but had a negative impact on the gene expression of RUNX2 and OSC, although there was no significant change in the expression of ALP and OSX. Celecoxib at therapeutic doses has no apparent adverse effects on cultured human osteoblasts and only inhibits the expression of some differentiation markers. These characteristics may place this drug in a preferential position among NSAIDs used for analgesic and anti-inflammatory therapy during bone tissue repair.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Celecoxib/farmacologia , Proliferação de Células/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Ciclo-Oxigenase 2/genética , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocalcina/genética , Osteogênese/efeitos dos fármacos , Cultura Primária de Células , Fator de Transcrição Sp7/genética
15.
Sci Rep ; 9(1): 12037, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427686

RESUMO

Low-Level Laser Therapy is used as regenerative therapy in different clinical fields. This is due to its photobiomodulation effect via cell signaling on different cell populations, Including fibroblasts, cells involved in tissue regeneration and healing. The aim was to analyze the effect of 940 nm diode laser on the gene expression of different markers involved in fibroblast growth, differentiation, and migration. Real-time polymerase chain reaction (q-RT-PCR) was used to quantify the expression of fibroblast growth factor (FGF), connective tissue growth factor (CTGF), vascular-endothelial growth factor (VEGF), transforming growth factor ß1 (TGF-ß1), TGFß-receptors (TGFßR1, TGFßR2, and TGFßR3), discoidin-domain receptor-2 (DDR2), matrix metalloproteinase-2 (MMP2), α-actin, fibronectin, decorin, and elastin on human fibroblast, treated with single dose (T1) or two doses (T2) of diode laser at 0.5 Watts and 4 J/cm2. A significant increase in the expression of FGF, TGF-ß1, TGFßR1, TGFßR2, α-actin, fibronectin, decorin, DDR2 and MMP2 was observed after both treatments. A decrease was observed in expression of elastin (T1 and T2), and CTGF (T2). These changes underlie the biostimulatory effect of laser on fibroblasts, which translates into an increase in short-term proliferation and in long-term differentiation to myofibroblasts. These data support the therapeutic potential of diode laser for wound repair.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Lasers Semicondutores , Biomarcadores , Células Cultivadas , Relação Dose-Resposta à Radiação , Humanos
16.
Nutrients ; 11(8)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349732

RESUMO

The phenolic compounds of extra-virgin olive oil can act at various levels to protect individuals against cardiovascular and neurodegenerative diseases, cancer, and osteoporosis, among others. Polyphenols in extra-virgin olive oil can stimulate the proliferation of osteoblasts, modify their antigen profile, and promote alkaline phosphatase synthesis. The objective of this work was to determine the effect of different extra-virgin olive oil phenolic compounds on the gene expression of osteoblast-related markers. The cells of the MG63 osteoblast line were cultured for 24 h with 10-6 M of the phenolic compounds ferulic acid, caffeic acid, coumaric acid, apigenin, or luteolin. The expression of studied markers was quantified using quantitative real-time polymerase chain reaction (q-RT-PCR). The expression by MG63 osteoblasts of growth and differentiation/maturation markers was modified after 24 h of treatment with 10-6 M of the phenolic compounds under study, most of which increased the gene expression of the transforming growth factor ß1 (TGF-ß1), TGF-ß receptor 1,2 and 3 (TGF-ßR1, TGF-ßR2, TGF-ßR3), bone morphogenetic protein 2 and 7 (BMP2, BMP7), run-related transcription factor 2 (RUNX-2), Alkaline phosphatase (ALP), Osteocalcin (OSC), Osterix (OSX), Collagen type I (Col-I) and osteoprotegerin (OPN). The extra-virgin olive oil phenolic compounds may have a beneficial effect on bone by modulating osteoblast physiology, which would support their protective effect against bone pathologies.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Azeite de Oliva , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fenóis/farmacologia , Adolescente , Conservadores da Densidade Óssea/isolamento & purificação , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Masculino , Azeite de Oliva/química , Osteoblastos/metabolismo , Osteogênese/genética , Fenóis/isolamento & purificação
17.
Oxid Med Cell Longev ; 2018: 3265918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524652

RESUMO

After spinal cord injury (SCI), some self-destructive mechanisms start leading to irreversible neurological deficits. It is known that oxidative stress and apoptosis play a major role in increasing damage after SCI. Metallothioneins I and II (MT) are endogenous peptides with known antioxidant, neuroprotective capacities. Taking advantage of those capacities, we administered exogenous MT to rats after SCI in order to evaluate the protective effects of MT on the production of reactive oxygen species (ROS) and lipid peroxidation (LP), as markers of oxidative stress. The activities of caspases-9 and -3 and the number of annexin V and TUNEL-positive cells in the spinal cord tissue were also measured as markers of apoptosis. Rats were subjected to either sham surgery or SCI and received vehicle or two doses of MT (10 µg per rat) at 2 and 8 h after surgical procedure. The results showed a significant increase in levels of MT protein by effect of SCI and SCI plus treatment at 12 h, while at 24 h an increase of MT was observed only in the injury plus treatment group (p < 0.05). ROS production was decreased by effect of MT in lesioned tissue; likewise, we observed diminished LP levels by MT effect both in the sham group and in the group with SCI. Also, the results showed an increase in the activity of caspase-9 due to SCI, without changes by effect of MT, as compared to the sham group. Caspase-3 activity was increased by SCI, and again, MT treatment reduced this effect only at 24 h after injury. Finally, the results of the number of cells positive to annexin V and TUNEL showed a reduction due to MT treatment both at 24 and 72 h after the injury. With the findings of this work, we conclude that exogenously administered MT has antioxidant and antiapoptotic effects after SCI.


Assuntos
Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Metalotioneína/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/prevenção & controle , Animais , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
18.
Arch Oral Biol ; 92: 75-78, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29763781

RESUMO

OBJECTIVE: To determine the effect of different nonsteroidal anti-inflammatory drugs (NSAIDs) on vascular endothelial growth factor (VEGF) gene expression in two osteoblast cell populations. DESIGN: Osteoblasts obtained by primary culture (HOp) and human osteosarcoma cell line MG63 (MG-63), which were treated with 10 µM doses of acetaminophen, indomethacin, ketoprofen, diclofenac, ibuprofen, ketorolac, naproxen or piroxicam. At 24 h of treatment, their gene expression of VEGF was evaluated by real-time polymerase chain reaction (RT-PCR) and compared with the expression in untreated cells (control group). RESULTS: The treatment with the different NSAIDs significantly reduced VEGF expression regardless of the cell line and NSAID studied. CONCLUSION: The results of this study suggest that these drugs may have undesirable effects on the osteoblast and its bone-forming capacity, given the effect of this growth factor on these cells. Further studies are warranted to determine their repercussions on bone tissue and to elucidate the cell signaling mechanism/s involved.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Linhagem Celular , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real
19.
PLoS One ; 13(4): e0196530, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698527

RESUMO

The reported incidence of osteoporosis is lower in countries in which the Mediterranean diet predominates, and this apparent relationship may be mediated by the phenolic compounds present in olive oil. The objective of this study was to determine the effect of phenolic extracts from different varieties of extra-virgin olive oil (Picual, Arbequina, Picudo, and Hojiblanca) on the differentiation, antigenic expression, and phagocytic capacity of osteoblast-like MG-63 cells. At 24 h of treatment a significant increase in phosphatase alkaline activity and significant reductions in CD54, CD80, and HLA-DR expression and in phagocytic activity were observed in comparison to untreated controls. The in vitro study performed has demonstrated that phenolic compounds from different extra virgin olive oil varieties can modulate different parameters related to osteoblast differentiation and function.


Assuntos
Olea/química , Osteoblastos/efeitos dos fármacos , Fenóis/química , Extratos Vegetais/farmacologia , Fosfatase Alcalina/metabolismo , Linhagem Celular , Antígenos HLA-DR/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Olea/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fagocitose/efeitos dos fármacos
20.
Int J Med Sci ; 15(4): 359-367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511371

RESUMO

The aim of the present study was to elucidate the role of osteoblasts in bisphosphonates-related osteonecrosis of the jaw (BRONJ). The specific objective was to evaluate the effect on osteoblasts of two nitrogen-containing BPs (zoledronate and alendronate) and one non-nitrogen-containing BP (clodronate) by analyzing modulations in their expression of genes essential for osteoblast physiology. Real-time polymerase chain reaction (RT-PCR) was used to study the effects of zoledronate, alendronate, and clodronate at doses of 10-5, 10-7, or 10-9 M on the expression of Runx-2, OSX, ALP, OSC, OPG, RANKL, Col-I, BMP-2, BMP-7, TGF-ß1, VEGF, TGF-ßR1, TGF-ßR2, and TGF-ßR3 by primary human osteoblasts (HOBs) and MG-63 osteosarcoma cells. Expression of these markers was found to be dose-dependent, with no substantive differences between these cell lines. In general, results demonstrated a significant increase in TFG-ß1, TGF-ßR1, TGF-ßR2, TGF-ßR3, and VEGF expressions and a significant reduction in RUNX-2, Col-1, OSX, OSC, BMP-2, BMP-7, ALP, and RANKL expressions, while OPG expression varied according to the dose and cell line. The results of this in vitro study of HOBS and MG-63 cell lines indicate that low BP doses can significantly affect the expression of genes essential for osteoblast growth and differentiation and of genes involved in regulating osteoblast-osteoclast interaction, possibly by increasing TGF-ß1 production. These findings suggest that osteoblasts may play an important role in BRONJ development, without ruling out other factors.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Alendronato/farmacologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/genética , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/patologia , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 7 , Proliferação de Células/efeitos dos fármacos , Ácido Clodrônico/farmacologia , Difosfonatos/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Cultura Primária de Células , Fator de Crescimento Transformador beta1/biossíntese , Ácido Zoledrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA