Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflammopharmacology ; 27(6): 1229-1242, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30612217

RESUMO

BACKGROUND: Naringenin is a biologically active analgesic, anti-inflammatory, and antioxidant flavonoid. Naringenin targets in inflammation-induced articular pain remain poorly explored. METHODS: The present study investigated the cellular and molecular mechanisms involved in the analgesic/anti-inflammatory effects of naringenin in zymosan-induced arthritis. Mice were pre-treated orally with naringenin (16.7-150 mg/kg), followed by intra-articular injection of zymosan. Articular mechanical hyperalgesia and oedema, leucocyte recruitment to synovial cavity, histopathology, expression/production of pro- and anti-inflammatory mediators and NFκB activation, inflammasome component expression, and oxidative stress were evaluated. RESULTS: Naringenin inhibited articular pain and oedema in a dose-dependent manner. The dose of 50 mg/kg inhibited leucocyte recruitment, histopathological alterations, NFκB activation, and NFκB-dependent pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-33), and preproET-1 mRNA expression, but increased anti-inflammatory IL-10. Naringenin also inhibited inflammasome upregulation (reduced Nlrp3, ASC, caspase-1, and pro-IL-1ß mRNA expression) and oxidative stress (reduced gp91phox mRNA expression and superoxide anion production, increased GSH levels, induced Nrf2 protein in CD45+ hematopoietic recruited cells, and induced Nrf2 and HO-1 mRNA expression). CONCLUSIONS: Naringenin presents analgesic and anti-inflammatory effects in zymosan-induced arthritis by targeting its main physiopathological mechanisms. These data highlight this flavonoid as an interesting therapeutic compound to treat joint inflammation, deserving additional pre-clinical and clinical studies.


Assuntos
Artrite/tratamento farmacológico , Flavanonas/uso terapêutico , Antígenos Comuns de Leucócito/análise , Fator 2 Relacionado a NF-E2/fisiologia , Zimosan/farmacologia , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Flavanonas/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Inflamassomos/efeitos dos fármacos , Articulação do Joelho/patologia , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
2.
Front Pharmacol ; 9: 1123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333752

RESUMO

Gouty arthritis is characterized by an intense inflammatory response to monosodium urate crystals (MSU), which induces severe pain and reduction in the life quality of patients. Trans-Chalcone (1,3-diphenyl-2-propen-1-one) is a flavonoid precursor presenting biological activities such as anti-inflammatory and antioxidant proprieties. Thus, the aim of this work was to evaluate the protective effects of trans-Chalcone in experimental gout arthritis in mice. Mice were treated with trans-Chalcone (3, 10, or 30 mg/kg, per oral) or vehicle (Tween 80 20% plus saline) 30 min before intra-articular injection of MSU (100 µg/knee joint, intra-articular). We observed that trans-Chalcone inhibited MSU-induced mechanical hyperalgesia, edema, and leukocyte recruitment (total leukocytes, neutrophils, and mononuclear cells) in a dose-dependent manner. Trans-Chalcone also decreased inflammatory cell recruitment as observed in Hematoxylin and Eosin (HE) staining and the intensity of fluorescence of LysM-eGFP+ cells in the confocal microscopy. Trans-Chalcone reduced MSU-induced oxidative stress as observed by an increase in the antioxidant defense [Glutathione (GSH), Ferric Reducing (FRAP), and 2,2'-Azinobis-3-ethylbenzothiazoline 6-sulfonic acid (ABTS assays)] and reduction in reactive oxygen and nitrogen species production [superoxide anion (NBT assay) and nitrite (NO assay)]. Furthermore, it reduced in vivo MSU-induced interleukin-1ß (IL-1ß), Tumor necrosis factor-α (TNF-α), and IL-6 production, and increased Transforming growth factor-ß (TGF-ß) production. Importantly, trans-Chalcone reduced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and thereby the mRNA expression of the inflammasome components Nlrp3 (cryopyrin), Asc (apoptosis-associated speck-like protein containing a CARD), Pro-caspase-1 and Pro-IL-1ß. In vitro, trans-Chalcone reduced the MSU-induced release of IL-1ß in lipopolysaccharide (LPS)-primed macrophages. Therefore, the pharmacological effects of trans-Chalcone indicate its therapeutic potential as an analgesic and anti-inflammatory flavonoid for the treatment of gout.

3.
J Agric Food Chem ; 66(25): 6269-6280, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29852732

RESUMO

Gout arthritis is a painful inflammatory disease induced by monosodium urate (MSU) crystals. We evaluate the therapeutic potential of the flavonoid hesperidin methylchalcone (HMC) in a mouse model of gout arthritis induced by intra-articular injection of MSU (100 µg/10 µL). Orally given HMC (3-30 mg/kg, 100 µL) reduced in a dose-dependent manner the MSU-induced hyperalgesia (44%, p < 0.05), edema (54%, p < 0.05), and leukocyte infiltration (70%, p < 0.05). HMC (30 mg/kg) inhibited MSU-induced infiltration of LysM-eGFP+ cells (81%, p < 0.05), synovitis (76%, p < 0.05), and oxidative stress (increased GSH, FRAP, and ABTS by 62, 78, and 73%, respectively; reduced O2- and NO by 89 and 48%, p < 0.05) and modulated cytokine production (reduced IL-1ß, TNF-α, IL-6, and IL-10 by 35, 72, 37, and 46%, respectively, and increased TGF-ß by 90%, p < 0.05). HMC also inhibited MSU-induced NF-κB activation (41%, p < 0.05), gp91phox (66%, p < 0.05) and NLRP3 inflammasome components mRNA expression in vivo (72, 77, 71, and 73% for NLRP3, ASC, pro-caspase-1, and pro-IL-1 ß, respectively, p < 0.05), and induced Nrf2/HO-1 mRNA expression (3.9- and 5.1-fold increase, respectively, p < 0.05). HMC (30, 100, and 300 µM) did not inhibit IL-1ß secretion by macrophages primed by LPS and challenged with MSU (450 µg/mL), demonstrating that the anti-inflammatory effect of HMC in gout arthritis depends on inhibiting NF-κB but not on direct inhibition of inflammasome. The pharmacological effects of HMC indicate its therapeutic potential for the treatment of gout.


Assuntos
Artrite Gotosa/tratamento farmacológico , Chalconas/administração & dosagem , Hesperidina/análogos & derivados , NF-kappa B/metabolismo , Animais , Artrite Gotosa/genética , Artrite Gotosa/metabolismo , Hesperidina/administração & dosagem , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Chem Biol Interact ; 268: 1-12, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28219639

RESUMO

Cutaneous leishmaniasis (CL) is the most common form of the leishmaniasis in humans. Ulcerative painless skin lesions are predominant clinical features of CL. Wider data indicate pain accompanies human leishmaniasis, out with areas of painless ulcerative lesions per se. In rodents, Leishmania (L.) major infection induces nociceptive behaviors that correlate with peripheral cytokine levels. However, the role of the spinal cord in pain processing after Leishmania infection has not been investigated. Balb/c mice received intraplantar (i.pl.) injection of Leishmania (L). amazonensis and hyperalgesia, edema, parasitism, and spinal cord TNFα, TNFR1 and TNFR2 mRNA expression, and NFκB activation were evaluated. The effects of intrathecal (i.t.) injection of morphine, TNFα, TNFα inhibitors (etanercept and adalimumab) and NFκB inhibitor (PDTC) were investigated. The present study demonstrates that Leishmania (L.) amazonensis infection in balb/c mice induces chronic mechanical and thermal hyperalgesia in an opioid-sensitive manner. Spinal cord TNFα mRNA expression increased in a time-dependent manner, peaking between 30 and 40 days after infection. At the peak of TNFα mRNA expression (day 30), there was a concomitant increase in TNFR1 and TNFR2 mRNA expression. TNFα i.t. injection enhanced L. (L.) amazonensis-induced hyperalgesia. Corroborating a role for TNFα in L. (L.) amazonensis-induced hyperalgesia, i.t. treatment with the TNFα inhibitors, etanercept and adalimumab inhibited the hyperalgesia. L. (L.) amazonensis also induced spinal cord activation of NFκB, and PDTC (given i.t.), also inhibited L. (L.) amazonensis-induced hyperalgesia, and spinal cord TNFα, TNFR1 and TNFR2 mRNA expression. Moreover, L. (L.) amazonensis-induced spinal cord activation of NFκB was also inhibited by etanercept and adalimumab as well as PDTC i.t. TREATMENT: These results demonstrate that endogenous spinal cord TNFα and NFκB activation contribute to L. (L.) amazonensis-induced hyperalgesia in mice. Thus, spinal cord TNFα and NFκB are potential therapeutic targets for Leishmania infection-induced pain.


Assuntos
Hiperalgesia/parasitologia , Leishmania mexicana/fisiologia , Leishmaniose Cutânea/parasitologia , NF-kappa B/metabolismo , Medula Espinal/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Adalimumab/administração & dosagem , Adalimumab/uso terapêutico , Animais , Etanercepte/administração & dosagem , Etanercepte/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Morfina/uso terapêutico , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Carga Parasitária , Pirrolidinas/administração & dosagem , Pirrolidinas/uso terapêutico , RNA Mensageiro/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Medula Espinal/metabolismo , Tiocarbamatos/administração & dosagem , Tiocarbamatos/uso terapêutico , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética
5.
Chem Biol Interact ; 237: 9-17, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25980587

RESUMO

In response to lipopolysaccharide (LPS), tissue resident macrophages and recruited neutrophils produce inflammatory mediators through activation of Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway. These mediators include inflammatory cytokines and reactive oxygen species that, in turn, sensitize nociceptors and lead to inflammatory pain. Vinpocetine is a nootropic drug widely used to treat cognitive and neurovascular disorders, and more recently its anti-inflammatory properties through inhibition of NF-κB activation have been described. In the present study, we used the intraplantar and intraperitoneal LPS stimulus in mice to investigate the effects of vinpocetine pre-treatment (3, 10, or 30mg/kg by gavage) in hyperalgesia, leukocyte recruitment, oxidative stress, and pro-inflammatory cytokine production (TNF-α, IL-1ß, and IL-33). LPS-induced NF-κB activation and cytokine production were investigated using RAW 264.7 macrophage cell in vitro. Vinpocetine (30mg/kg) significantly reduces hyperalgesia to mechanical and thermal stimuli, and myeloperoxidase (MPO) activity (a neutrophil marker) in the plantar paw skin, and also inhibits neutrophil and mononuclear cell recruitment, superoxide anion and nitric oxide production, oxidative stress, and cytokine production (TNF-α, IL-1ß and IL-33) in the peritoneal cavity. At least in part, these effects seem to be mediated by direct effects of vinpocetine on macrophages, since it inhibited the production of the same cytokines (TNF-α, IL-1ß and IL-33) and the NF-κB activation in LPS-stimulated RAW 264.7 macrophages. Our results suggest that vinpocetine represents an important therapeutic approach to treat inflammation and pain induced by a gram-negative bacterial component by targeting NF-κB activation and NF-κB-related cytokine production in macrophages.


Assuntos
Citocinas/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Dor/prevenção & controle , Animais , Citocinas/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Dor/induzido quimicamente , Cavidade Peritoneal , Peroxidase/metabolismo , Alcaloides de Vinca/farmacologia
6.
PLoS One ; 10(3): e0118942, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822523

RESUMO

Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1ß and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels.


Assuntos
Hiperalgesia/tratamento farmacológico , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Medula Espinal/metabolismo , Alcaloides de Vinca/uso terapêutico , Animais , Carragenina/toxicidade , Citocinas/genética , Citocinas/metabolismo , Extremidades/fisiopatologia , Glutationa/metabolismo , Hiperalgesia/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Superóxidos/metabolismo , Alcaloides de Vinca/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA