Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(20): 13918-13945, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37816126

RESUMO

A series of 25 chiral anti-cancer lipidic alkynylcarbinols (LACs) were devised by introducing an (hetero)aromatic ring between the aliphatic chain and the dialkynylcarbinol warhead. The resulting phenyl-dialkynylcarbinols (PACs) exhibit enhanced stability, while retaining cytotoxicity against HCT116 and U2OS cell lines with IC50 down to 40 nM for resolved eutomers. A clickable probe was used to confirm the PAC prodrug behavior: upon enantiospecific bio-oxidation of the carbinol by the HSD17B11 short-chain dehydrogenase/reductase (SDR), the resulting ynones covalently modify cellular proteins, leading to endoplasmic reticulum stress, ubiquitin-proteasome system inhibition, and apoptosis. Insights into the design of LAC prodrugs specifically bioactivated by HSD17B11 vs its paralogue HSD17B13 were obtained. The HSD17B11/HSD17B13-dependent cytotoxicity of PACs was exploited to develop a cellular assay to identify specific inhibitors of these enzymes. A docking study was performed with the HSD17B11 AlphaFold model, providing a molecular basis of the SDR substrates mimicry by PACs. The safety profile of a representative PAC was established in mice.


Assuntos
Alcinos , Antineoplásicos , Camundongos , Animais , Alcinos/farmacologia , Alcinos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Acetileno , Estrutura Molecular , Lipídeos/química , Linhagem Celular Tumoral
2.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535493

RESUMO

Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.


Assuntos
Antineoplásicos , Redutases-Desidrogenases de Cadeia Curta , Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático , Humanos , Lipídeos , Resposta a Proteínas não Dobradas
3.
ChemMedChem ; 13(11): 1124-1130, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603643

RESUMO

In line with a recent study of the pharmacological potential of bioinspired synthetic acetylenic lipids, after identification of the terminal dialkynylcarbinol (DAC) and butadiynyl alkynylcarbinol (BAC) moieties as functional antitumor pharmacophoric units, this work specifically addresses the issue of carbon backbone length. A systematic variation of the aliphatic chain length was thus carried out in both the DAC and BAC series. The critical impact of the length of the lipidic skeleton was first confirmed in the racemic series, with the highest cytotoxic activity observed for C17 to C18 backbones. Enantiomerically enriched samples were prepared by asymmetric synthesis of the optimal C18 DAC and C17 BAC derivatives. Samples with upgraded enantiomeric purity were alternatively produced by enzymatic kinetic resolution. Eutomers possessing the S configuration displayed cytotoxicity IC50 values as low as 15 nm against HCT116 cancer cells, the highest level of activity reached to date in this series.


Assuntos
Alcinos/farmacologia , Antineoplásicos/farmacologia , Álcoois Graxos/farmacologia , Alcinos/síntese química , Alcinos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Álcoois Graxos/síntese química , Álcoois Graxos/química , Células HCT116 , Humanos , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA