Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
2.
PLoS One ; 16(8): e0255204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34351959

RESUMO

Advances in intravital microscopy (IVM) have enabled the studies of cellular organization and dynamics in the native microenvironment of intact organisms with minimal perturbation. The abilities to track specific cell populations and monitor their interactions have opened up new horizons for visualizing cell biology in vivo, yet the success of standard fluorescence cell labeling approaches for IVM comes with a "dark side" in that unlabeled cells are invisible, leaving labeled cells or structures to appear isolated in space, devoid of their surroundings and lacking proper biological context. Here we describe a novel method for "filling in the void" by harnessing the ubiquity of extracellular (interstitial) fluid and its ease of fluorescence labelling by commonly used vascular and lymphatic tracers. We show that during routine labeling of the vasculature and lymphatics for IVM, commonly used fluorescent tracers readily perfuse the interstitial spaces of the bone marrow (BM) and the lymph node (LN), outlining the unlabeled cells and forming negative contrast images that complement standard (positive) cell labeling approaches. The method is simple yet powerful, offering a comprehensive view of the cellular landscape such as cell density and spatial distribution, as well as dynamic processes such as cell motility and transmigration across the vascular endothelium. The extracellular localization of the dye and the interstitial flow provide favorable conditions for prolonged Intravital time lapse imaging with minimal toxicity and photobleaching.


Assuntos
Meios de Contraste/química , Microscopia Intravital , Animais , Automação , Medula Óssea/diagnóstico por imagem , Feminino , Corantes Fluorescentes/química , Linfonodos/diagnóstico por imagem , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fluxo Sanguíneo Regional , Fatores de Tempo
3.
J Biomed Opt ; 24(8): 1-11, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31456386

RESUMO

Circulating tumor cells (CTCs) are of great interest in cancer research because of their crucial role in hematogenous metastasis. We recently developed "diffuse in vivo flow cytometry" (DiFC), a preclinical research tool for enumerating extremely rare fluorescently labeled CTCs directly in vivo. In this work, we developed a green fluorescent protein (GFP)-compatible version of DiFC and used it to noninvasively monitor tumor cell numbers in circulation in a multiple myeloma (MM) disseminated xenograft mouse model. We show that DiFC allowed enumeration of CTCs in individual mice overtime during MM growth, with sensitivity below 1 CTC mL − 1 of peripheral blood. DiFC also revealed the presence of CTC clusters (CTCCs) in circulation to our knowledge for the first time in this model and allowed us to calculate CTCC size, frequency, and kinetics of shedding. We anticipate that the unique capabilities of DiFC will have many uses in preclinical study of metastasis, in particular, with a large number of GFP-expressing xenograft and transgenic mouse models.


Assuntos
Microscopia Confocal , Mieloma Múltiplo/sangue , Mieloma Múltiplo/diagnóstico por imagem , Células Neoplásicas Circulantes , Animais , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Masculino , Camundongos , Camundongos SCID , Camundongos Transgênicos , Metástase Neoplásica , Transplante de Neoplasias , Imagens de Fantasmas
4.
Sci Rep ; 9(1): 3366, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833671

RESUMO

Circulating tumor cells (CTCs) are of great interest in cancer research, but methods for their enumeration remain far from optimal. We developed a new small animal research tool called "Diffuse in vivo Flow Cytometry" (DiFC) for detecting extremely rare fluorescently-labeled circulating cells directly in the bloodstream. The technique exploits near-infrared diffuse photons to detect and count cells flowing in large superficial arteries and veins without drawing blood samples. DiFC uses custom-designed, dual fiber optic probes that are placed in contact with the skin surface approximately above a major vascular bundle. In combination with a novel signal processing algorithm, DiFC allows counting of individual cells moving in arterial or venous directions, as well as measurement of their speed and depth. We show that DiFC allows sampling of the entire circulating blood volume of a mouse in under 10 minutes, while maintaining a false alarm rate of 0.014 per minute. In practice, this means that DiFC allows reliable detection of circulating cells below 1 cell per mL. Hence, the unique capabilities of DiFC are highly suited to biological applications involving very rare cell types such as the study of hematogenous cancer metastasis.


Assuntos
Citometria de Fluxo/métodos , Células Neoplásicas Circulantes/patologia , Algoritmos , Animais , Artérias , Velocidade do Fluxo Sanguíneo , Contagem de Células/métodos , Corantes Fluorescentes , Camundongos , Metástase Neoplásica/diagnóstico por imagem , Fibras Ópticas , Veias
5.
Methods Mol Biol ; 1763: 11-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29476484

RESUMO

The bone marrow is a unique microenvironment where blood cells are produced and released into the circulation. At the top of the blood cell lineage are the hematopoietic stem cells (HSC), which are thought to reside in close association with the bone marrow vascular endothelial cells (Morrison and Scadden, Nature 505:327-334, 2014). Recent efforts at characterizing the HSC niche have prompted us to make close examinations of two distinct types of blood vessel in the bone marrow, the arteriolar vessels originating from arteries and sinusoidal vessels connected to veins. We found the two vessel types to exhibit different vascular permeabilites, hemodynamics, cell trafficking behaviors, and oxygen content (Itkin et al., Nature 532:323-328, 2016; Spencer et al., Nature 508:269-273, 2014). Here, we describe a method to quantitatively measure the permeability and hemodynamics of arterioles and sinusoids in murine calvarial bone marrow using intravital microscopy.


Assuntos
Arteríolas/citologia , Medula Óssea/crescimento & desenvolvimento , Capilares/citologia , Permeabilidade Capilar , Células-Tronco Hematopoéticas/citologia , Hemodinâmica , Microscopia Intravital/métodos , Animais , Arteríolas/metabolismo , Medula Óssea/metabolismo , Capilares/metabolismo , Movimento Celular , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
Sci Rep ; 7(1): 3875, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634334

RESUMO

Transplantation of a single hematopoietic stem cell is an important method for its functional characterization, but the standard transplantation protocol relies on cell homing to the bone marrow after intravenous injection. Here, we present a method to transplant single cells directly into the bone marrow of live mice. We developed an optical platform that integrates a multiphoton microscope with a laser ablation unit for microsurgery and an optical tweezer for cell micromanipulation. These tools allow image-guided single cell transplantation with high spatial control. The platform was used to deliver single hematopoietic stem cells. The engraftment of transplants was tracked over time, illustrating that the technique can be useful for studying both normal and malignant stem cells in vivo.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Imagem Molecular , Análise de Célula Única , Animais , Camundongos , Camundongos Transgênicos , Análise de Célula Única/métodos
7.
J Biomed Opt ; 22(3): 37004, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28290598

RESUMO

There has been significant recent interest in the development of technologies for enumeration of rare circulating cells directly in the bloodstream in many areas of research, for example, in small animal models of circulating tumor cell dissemination during cancer metastasis. We describe a fiber-based optical probe that allows fluorescence detection of labeled circulating cells in vivo in a diffuse reflectance configuration. We validated this probe in a tissue-mimicking flow phantom model in vitro and in nude mice injected with fluorescently labeled multiple myeloma cells in vivo. Compared to our previous work, this design yields an improvement in detection signal-to-noise ratio of 10 dB, virtually eliminates problematic motion artifacts due to mouse breathing, and potentially allows operation in larger animals and limbs.


Assuntos
Contagem de Células/instrumentação , Animais , Corantes Fluorescentes/metabolismo , Camundongos , Camundongos Nus , Metástase Neoplásica/diagnóstico , Neoplasias/diagnóstico , Células Neoplásicas Circulantes , Imagens de Fantasmas
8.
Science ; 354(6316): 1156-1160, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27738012

RESUMO

A single hematopoietic stem cell (HSC) is capable of reconstituting hematopoiesis and maintaining homeostasis by balancing self-renewal and cell differentiation. The mechanisms of HSC division balance, however, are not yet defined. Here we demonstrate, by characterizing at the single-cell level a purified and minimally heterogeneous murine Tie2+ HSC population, that these top hierarchical HSCs preferentially undergo symmetric divisions. The induction of mitophagy, a quality control process in mitochondria, plays an essential role in self-renewing expansion of Tie2+ HSCs. Activation of the PPAR (peroxisome proliferator-activated receptor)-fatty acid oxidation pathway promotes expansion of Tie2+ HSCs through enhanced Parkin recruitment in mitochondria. These metabolic pathways are conserved in human TIE2+ HSCs. Our data thus identify mitophagy as a key mechanism of HSC expansion and suggest potential methods of cell-fate manipulation through metabolic pathways.


Assuntos
Autorrenovação Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Mitocôndrias/fisiologia , Mitofagia/fisiologia , Animais , Separação Celular , Ácidos Graxos/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/química , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Mitofagia/genética , Oxirredução , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptor TIE-2/análise , Análise de Célula Única , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Sci Rep ; 6: 24303, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27073117

RESUMO

Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also attractive tools for understanding clonal expansion and clonal competition in cancer. However, the assignment of clonal identity requires an analytical framework in which clonal markings can be parameterized and validated. Here we present a systematic and quantitative method for RGB analysis of fluorescent melanoma cancer clones. We then demonstrate refined clonal trackability of melanoma cells using this scheme.


Assuntos
Células Clonais/metabolismo , Cor , Proteínas Luminescentes/química , Fluorescência
10.
Invest Ophthalmol Vis Sci ; 55(8): 5314-9, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25082884

RESUMO

PURPOSE: Gamma irradiation and bone marrow transplantation (BMT) are established clinical procedures for the treatment of hematologic malignancies. The radiation targets cells in the bone marrow, but injury to other tissues, including the central nervous system (CNS), have been reported. Here, we examine if anti-inflammatory treatment can mitigate the radiation-induced turnover of retinal microglia and the replacement by bone marrow-derived cells (BMDCs). METHODS: Two-color chimeric mice were generated by lethal irradiation of heterozygous CX3CR1-GFP mice that express GFP in microglial cells and bone marrow transplantation from universal DsRed donor mice. Mice were treated with the corticosteroid dexamethasone; a control group received no dexamethasone treatment. The populations of resident microglia (GFP+) and BMDCs (DsRed+) were quantified by serial in vivo imaging for 10 weeks after irradiation with a confocal scanning laser ophthalmoscope that we custom-built specifically for multicolor imaging of the murine retina. RESULTS: Ionizing radiation resulted in loss of 75% of the resident retinal microglia population after 70 days. Recruitment of BMDCs was delayed with respect to the microglia loss, resulting in a transient depletion of the total immune cell number in the retina. With dexamethasone treatment, both the loss of the resident microglia and the infiltration of BMDCs were suppressed by at least 50%. CONCLUSIONS: Anti-inflammatory treatment with the corticosteroidal agent dexamethasone preserves resident microglia and minimizes recruitment of BMDCs after ionizing radiation exposure and BMT.


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Microglia/efeitos dos fármacos , Microglia/efeitos da radiação , Retina , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Células da Medula Óssea/efeitos da radiação , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Retina/efeitos dos fármacos , Retina/efeitos da radiação
11.
Methods Mol Biol ; 1185: 247-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062634

RESUMO

Over the past 50 years, much insight has been gained into the biology of hematopoietic stem cells (HSCs). Much of this information has been gained though isolation of specific bone marrow populations, and transplantation into irradiated recipients followed by characterization of chimeras months later. These studies have yielded insights into the function of HSCs, but have shed little light on the interactions of individual stem cells with their environment. Characterization of the behavior of single HSCs awaited the use of relatively noninvasive intravital microscopy, which allows one to identify rare cells in real time and follow them in multiple imaging sessions. Here we describe techniques used to image transplanted HSCs in the mouse calvarium using hybrid confocal/multi-photon microscopy and second harmonic imaging. For detection, fluorescently tagged HSCs are transplanted into a recipient mouse. The architecture of the bone marrow can be delineated using a combination of fluorescent probes and vascular dyes, second harmonic generation to detect the collagen signal from bone, and transgenic recipient mice containing specific fluorescent support cell populations.


Assuntos
Células-Tronco Hematopoéticas/citologia , Imagem Molecular/métodos , Crânio/citologia , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Imageamento Tridimensional , Camundongos , Microscopia de Fluorescência
12.
Nature ; 508(7495): 269-73, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24590072

RESUMO

Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (<32 mm Hg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (∼9.9 mm Hg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.


Assuntos
Medula Óssea/metabolismo , Oxigênio/análise , Animais , Artérias/metabolismo , Medula Óssea/irrigação sanguínea , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Bussulfano/farmacologia , Hipóxia Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hipóxia/diagnóstico , Hipóxia/metabolismo , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Nestina/metabolismo , Oxigênio/metabolismo , Fótons , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/efeitos da radiação
13.
PLoS One ; 8(8): e69257, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990881

RESUMO

We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion) after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. Combining the use of this photoconvertible dye with intravital microscopy, we tracked the division of individual hematopoietic stem/progenitor cells within the calvarium bone marrow of live mice. We also studied the peripheral differentiation of individual T cells by tracking the gain or loss of FoxP3-GFP expression, a marker of the immune suppressive function of CD4(+) T cells. With the near-infrared photoconvertible membrane dye, the entire visible spectral range is available for simultaneous use with other fluorescent proteins to monitor gene expression or to trace cell lineage commitment in vivo with high spatial and temporal resolution.


Assuntos
Membrana Celular/metabolismo , Corantes/química , Fotoquímica , Análise de Célula Única/métodos , Animais , Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Linhagem da Célula , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Espectrometria de Fluorescência , Coloração e Rotulagem/métodos , Células-Tronco/citologia , Linfócitos T/citologia , Fatores de Tempo
14.
J Biomed Opt ; 18(7): 077002, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23831714

RESUMO

Detection and enumeration of rare circulating cells in mice are important problems in many areas of preclinical biomedical research. Recently, we developed a new method termed "diffuse fluorescence flow cytometry" (DFFC) that uses diffuse photons to increase the blood sampling volume and sensitivity versus existing in vivo flow cytometry methods. In this work, we describe a new DFFC prototype with approximately an order-of-magnitude improvement in sensitivity compared to our previous work. This sensitivity improvement is enabled by a number of technical innovations, which include a method for the removal of motion artifacts (allowing interrogation of mouse hindlegs that was less optically attenuating versus the tail) and improved collection optics and signal preamplification. We validated our system first in limb mimicking optical flow phantoms with fluorescent microspheres and then in nude mice with fluorescently labeled mesenchymal stem cells at injected concentrations of 5×103 cells/mL. In combination, these improvements resulted in an overall cell counting sensitivity of about 1 cell/mL or better in vivo.


Assuntos
Citometria de Fluxo/métodos , Imagem Óptica/métodos , Animais , Corantes Fluorescentes/química , Células-Tronco Mesenquimais , Camundongos , Camundongos Nus , Microesferas , Imagens de Fantasmas , Sensibilidade e Especificidade , Razão Sinal-Ruído
15.
Phys Med Biol ; 57(14): 4627-41, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22750660

RESUMO

Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a 'diffuse fluorescence flow cytometer' (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument.


Assuntos
Separação Celular/métodos , Corantes Fluorescentes/metabolismo , Mieloma Múltiplo/patologia , Células Neoplásicas Circulantes/patologia , Tomografia/métodos , Algoritmos , Animais , Processamento de Imagem Assistida por Computador , Lasers , Camundongos , Método de Monte Carlo , Células Neoplásicas Circulantes/metabolismo , Imagens de Fantasmas
16.
Cytometry A ; 79(10): 758-65, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21905206

RESUMO

We provide an overview of the methods used to label circulating cells for fluorescence detection by in vivo flow cytometry. These methods are useful for cell tracking in small animals without the need to draw blood samples and are particularly useful for the detection of circulating cancer cells and quantification of circulating immune cells.


Assuntos
Anticorpos/análise , Citometria de Fluxo , Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde/análise , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/patologia , Coloração e Rotulagem , Transferência Adotiva , Animais , Anticorpos/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Fluorescência , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Humanos , Camundongos , Imagem Molecular/métodos , Neoplasias/patologia , Técnicas Fotoacústicas/métodos , Coloração e Rotulagem/métodos
17.
J Biomed Opt ; 16(1): 011006, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21280893

RESUMO

Multiple myeloma (MM), the second most common hematological malignancy, initiates from a single site and spreads via circulation to multiple sites in the bone marrow (BM). Methods to track MM cells both in the BM and circulation would be useful for developing new therapeutic strategies to target MM cell spread. We describe the use of complementary optical techniques to track human MM cells expressing both bioluminescent and fluorescent reporters in a mouse xenograft model. Long-term tumor growth and response to therapy are monitored using bioluminescence imaging (BLI), while numbers of circulating tumor cells are detected by in-vivo flow cytometry. Intravital microscopy is used to detect early seeding of MM cells to the BM, as well as residual cancer cells that remain in the BM after the bulk of the tumor is eradicated following drug treatment. Thus, intravital microscopy provides a powerful, albeit invasive, means to study cellular processes in vivo at the very early stage of the disease process and at the very late stage of therapeutic intervention when the tumor burden is too small to be detected by other imaging methods.


Assuntos
Ácidos Borônicos/uso terapêutico , Rastreamento de Células/métodos , Citometria de Fluxo/métodos , Microscopia de Fluorescência/métodos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/fisiopatologia , Pirazinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Bortezomib , Linhagem Celular Tumoral , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mieloma Múltiplo/patologia , Resultado do Tratamento
18.
Artigo em Inglês | MEDLINE | ID: mdl-22254354

RESUMO

Detection and quantification of rare circulating cells in biological tissues is an important problem and has many applications in biomedical research. Current methods normally involve extraction of blood samples and counting of cells ex vivo, or the use of microscopy-based fluorescence in vivo flow cytometry. The goal of this work is to develop an instrument for non-invasively enumerating very rare circulating cells in small animals with diffuse light with several orders of magnitude sensitivity improvement versus current approaches. In this work, we describe the design of our system and show that single, fluorescent microspheres can be detected in limb-mimicking optical flow phantoms with varying optical properties chosen to simulate in vivo conditions. Further, we demonstrate single cell counting capabilities using fluorescently (Vybrant-DiD) labeled Jurkat and Multiple Myeloma cells. Ongoing work includes in vivo testing and characterization of our system in mice.


Assuntos
Contagem de Células/instrumentação , Rastreamento de Células/instrumentação , Iluminação/instrumentação , Microscopia de Fluorescência/instrumentação , Células Neoplásicas Circulantes/patologia , Nefelometria e Turbidimetria/instrumentação , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Blood ; 116(9): 1506-14, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20519629

RESUMO

Waldenström macroglobulinemia (WM) cells present with increased expression of microRNA-206 (miRNA-206) and reduced expression of miRNA-9*. Predicted miRNA-206- and -9*-targeted genes include histone deacetylases (HDACs) and histone acetyl transferases (HATs), indicating that these miRNAs may play a role in regulating histone acetylation. We were able to demonstrate that primary WM cells are characterized by unbalanced expression of HDACs and HATs, responsible for decreased acetylated histone-H3 and -H4, and increased HDAC activity. We next examined whether miRNA-206 and -9* modulate the aberrant expression of HDAC and HATs in WM cells leading to increased transcriptional activity. We found that restoring miRNA-9* levels induced toxicity in WM cells, supported by down-modulation of HDAC4 and HDAC5 and up-regulation of acetyl-histone-H3 and -H4. These, together with inhibited HDAC activity, led to induction of apoptosis and autophagy in WM cells. To further confirm that miRNA-9*-dependent modulation of histone acetylation is responsible for induction of WM cytotoxicity, a novel class of HDAC inhibitor (LBH589) was used; we confirmed that inhibition of HDAC activity leads to toxicity in this disease. These findings confirm that histone-modifying genes and HDAC activity are deregulated in WM cells, partially driven by the aberrant expression of miRNA-206 and -9* in the tumor clone.


Assuntos
Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , MicroRNAs/fisiologia , Proteínas Repressoras/metabolismo , Macroglobulinemia de Waldenstrom/metabolismo , Macroglobulinemia de Waldenstrom/patologia , Acetilação , Apoptose , Autofagia , Western Blotting , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Histona Acetiltransferases/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histonas/metabolismo , Humanos , RNA Mensageiro/genética , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Macroglobulinemia de Waldenstrom/genética
20.
Blood ; 115(20): 4051-60, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20110419

RESUMO

Proteasome inhibition represents a valid antitumor approach and its use has been validated in Waldenström macroglobulinemia (WM), where bortezomib has been successfully tested in clinical trials. Nevertheless, a significant fraction of patients relapses, and many present toxicity due to its off-target effects. Selective inhibition of the chymotrypsin-like (CT-L) activity of constitutive proteasome 20S (c20S) and immunoproteasome 20S (i20S) represents a sufficient and successful strategy to induce antineoplastic effect in hematologic tumors. We therefore studied ONX0912, a novel selective, irreversible inhibitor of the CT-L activity of i20S and c20S. Primary WM cells express higher level of i20S compared with c20S, and that ONX0912 inhibited the CT-L activity of both i20S and c20S, leading to induction of toxicity in primary WM cells, as well as of apoptosis through c-Jun N-terminal kinase activation, nuclear factor kappaB (NF-kappaB) inhibition, caspase cleavage, and initiation of the unfolded protein response. Importantly, ONX0912 exerted toxicity in WM cells, by reducing bone marrow (BM)-derived interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1) secretion, thus inhibiting BM-induced p-Akt and phosphorylated extracellular signal-related kinase (p-ERK) activation in WM cells. These findings suggest that targeting i20S and c20S CT-L activity by ONX0912 represents a valid antitumor therapy in WM.


Assuntos
Quimotripsina/antagonistas & inibidores , Dipeptídeos/farmacologia , Linfoma/enzimologia , Linfoma/imunologia , Inibidores de Proteassoma , Tiazóis/farmacologia , Macroglobulinemia de Waldenstrom/enzimologia , Apoptose , Quimotripsina/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Immunoblotting , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Linfoma/tratamento farmacológico , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidores de Proteases/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Macroglobulinemia de Waldenstrom/tratamento farmacológico , Macroglobulinemia de Waldenstrom/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA