Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods ; 231: 178-185, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39368764

RESUMO

A stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed to assay tonabersat and assess its stability in pharmaceutical formulations. Chromatographic separation was achieved using a Kinetex® C18 column (2.6 µm, 150 x 3 mm, 100 Å) at 50 °C, with a 20 µL injection volume. A linear gradient of acetonitrile in water (5 - 33.5 %) was applied for 1 min, followed by a gradual increase to 100 % over 26 min at a flow rate of 0.5 mL/min. Tonabersat and its degradation products were detected at 275 nm and 210 nm, respectively. The optimized method was used to evaluate the stability of tonabersat in lipid-based pharmaceutical formulations at 5 ± 3 °C, 25 ± 2°C/60 ± 5 % RH, and 40 ± 2 °C/75 ± 5 % RH over 3 months. The method was validated as per ICH guidelines and demonstrated linearity in the range of 5 - 200 µg/mL (R2 = 0.99994) with good accuracy (98.25 - 101.58 % recovery) and precision (% RSD < 2.5 %). The limits of detection and quantitation were 0.8 µg/mL and 5 µg/mL, respectively. Forced degradation studies showed significant degradation on exposure to alkaline (90.33 ± 0.80 %), acidic (70.60 ± 1.57 %), and oxidative stress (33.95 ± 0.69 %) at 70 °C, but no degradation was observed on exposure to thermal or photolytic stress. No chemical degradation was observed in either formulation on storage. Thus, the method was sensitive, specific, and suitable for stability testing of tonabersat in pharmaceutical formulations.


Assuntos
Estabilidade de Medicamentos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Reprodutibilidade dos Testes , Limite de Detecção , Química Farmacêutica/métodos
2.
Biomedicines ; 11(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509662

RESUMO

Experimental autoimmune uveitis (EAU) is the most commonly used animal model to study the progression of chronic uveitis and to test various therapies to treat the disease. However, to accurately evaluate the effectiveness of such treatments, a grading system that combines the latest imaging techniques with definitive quantitative grading thresholds is required. This study aimed to develop a comprehensive grading system that objectively evaluates EAU progression in C57BL/6J mice. EAU was induced following immunisation with interphotoreceptor retinoid-binding protein (IRBP) and pertussis toxin. Weekly fundus and optical coherence tomography (OCT) images were acquired over 12 weeks using a Micron IV imaging system. Each mouse was graded (between 0 to 4) based on changes seen on both the fundus (optic disc, retinal blood vessels and retinal tissue) and OCT (vitreous and retinal layers) images. A total EAU response (with a maximum score of 48) was calculated for each mouse based on the sum of the individual scores each week. Analysis of the clinical scores depicted a gradual increase in inflammatory signs including optic disc and vascular swelling, leukocyte infiltration in the vitreous, lesions in the retina and formation of granulomas and hyper-reflective foci in the retinal layers in EAU mice, with most signs reaching a plateau towards the end of the study period. Development of these signs into sight-threatening complications such as optic disc atrophy, structural damage to the retina and subretinal oedema were noted in 80-90% of mice suggesting consistent disease induction. Overall, a comprehensive and objective grading system encompassing all pathologies occurring in EAU mice was developed to enhance the preclinical evaluation of novel uveitis treatments.

3.
Int J Mol Sci ; 24(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835288

RESUMO

Diabetic retinopathy (DR), a microvascular complication of diabetes, is associated with pronounced inflammation arising from the activation of a nucleotide-binding and oligomerization domain-like receptor (NLR) protein 3 (NLRP3) inflammasome. Cell culture models have shown that a connexin43 hemichannel blocker can prevent inflammasome activation in DR. The aim of this study was to evaluate the ocular safety and efficacy of tonabersat, an orally bioavailable connexin43 hemichannel blocker, to protect against DR signs in an inflammatory non-obese diabetic (NOD) DR mouse model. For retina safety studies, tonabersat was applied to retinal pigment epithelial (ARPE-19) cells or given orally to control NOD mice in the absence of any other stimuli. For efficacy studies, either tonabersat or a vehicle was given orally to the inflammatory NOD mouse model two hours before an intravitreal injection of pro-inflammatory cytokines, interleukin-1 beta, and tumour necrosis factor-alpha. Fundus and optical coherence tomography images were acquired at the baseline as well as at 2- and 7-day timepoints to assess microvascular abnormalities and sub-retinal fluid accumulation. Retinal inflammation and inflammasome activation were also assessed using immunohistochemistry. Tonabersat did not have any effect on ARPE-19 cells or control NOD mouse retinas in the absence of other stimuli. However, the tonabersat treatment in the inflammatory NOD mice significantly reduced macrovascular abnormalities, hyperreflective foci, sub-retinal fluid accumulation, vascular leak, inflammation, and inflammasome activation. These findings suggest that tonabersat may be a safe and effective treatment for DR.


Assuntos
Benzamidas , Conexina 43 , Retinopatia Diabética , Animais , Camundongos , Conexina 43/antagonistas & inibidores , Retinopatia Diabética/tratamento farmacológico , Modelos Animais de Doenças , Inflamassomos/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos NOD , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Administração Oral , Benzamidas/administração & dosagem , Benzamidas/farmacologia
4.
Mol Pharm ; 20(1): 23-40, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36332193

RESUMO

Extracellular vesicles (EVs) are a group of cell-derived membrane vesicles of varying sizes that can be secreted by most cells. Depending on the type of cell they are derived from, EVs may contain a variety of cargo including proteins, lipids, miRNA, and DNA. Functionally, EVs play important roles in physiological and pathological processes through intercellular communication. While there has already been significant literature on the involvement of EVs in neurological and cardiovascular disease as well as cancer, recent evidence suggests that EVs may also play a role in mediating inflammatory eye diseases. This paper summarizes current advancements in ocular EV research as well as new ways by which EVs may be utilized as novel biomarkers of or therapeutics for inflammatory eye diseases.


Assuntos
Vesículas Extracelulares , Oftalmopatias , MicroRNAs , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Oftalmopatias/tratamento farmacológico , Neoplasias/metabolismo
5.
Cell Biol Int ; 46(2): 323-330, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34719065

RESUMO

Epithelial-mesenchymal transition (EMT) occurs when polarised epithelial cells change to a mesenchymal phenotype. EMT plays a role in several chronic conditions, including ocular diseases with retinal pigment epithelium (RPE) EMT associated with retinal diseases such as diabetic retinopathy (DR). Here, EMT results in breakdown of the blood-retinal barrier (BRB) leading to sub-retinal fluid deposition and retinal detachment. Previous studies have shown that blocking connexin43 (Cx43) hemichannels can protect against RPE BRB breakdown, but the underlying mechanism is unknown. To determine whether open Cx43 hemichannels may enable EMT of RPE cells and thus result in BRB breakdown, ARPE-19 cells were either challenged with high glucose plus the inflammatory cytokines IL-1ß and TNF-α (HG + Cyt) to simulate DR or treated with the Cx43 hemichannel blocker tonabersat alongside the HG + Cyt challenge. HG + Cyt induced a morphological change in RPE cells to a fibroblastic phenotype with a corresponding decrease in epithelial zonular occludens-1 and an increase in the fibroblastic marker α-SMA. The HG + Cyt challenge also induced loss of transepithelial electrical resistance while increasing dye passage between RPE cells. All of these changes were significantly reduced with tonabersat treatment, which also prevented HG + Cyt-induced transforming growth factor-ß2 (TGF-ß2) release. In conclusion, Cx43 hemichannel block with tonabersat attenuated both TGF-ß2 release and RPE EMT under disease-mimicking conditions, offering the potential to ameliorate the progression of EMT-associated retinal diseases.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta2 , Conexina 43/metabolismo , Células Epiteliais/metabolismo , Humanos , Epitélio Pigmentado da Retina/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Regulação para Cima
6.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578721

RESUMO

Dysregulation of retinal function in the early stages of light-induced retinal degeneration involves pannexins and connexins. These two types of proteins may contribute to channels that release ATP, leading to activation of the inflammasome pathway, spread of inflammation and retinal dysfunction. However, the effect of pannexin channel block alone or block of both pannexin channels and connexin hemichannels in parallel on retinal activity in vivo is unknown. In this study, the pannexin channel blocker probenecid and the connexin hemichannel blocker tonabersat were used in the light-damaged rat retina. Retinal function was evaluated using electroretinography (ERG), retinal structure was analyzed using optical coherence tomography (OCT) imaging and the tissue response to light-induced injury was assessed immunohistochemically with antibodies against glial fibrillary acidic protein (GFAP), Ionized calcium binding adaptor molecule 1 (Iba-1) and Connexin43 (Cx43). Probenecid did not further enhance the therapeutic effect of connexin hemichannel block in this model, but on its own improved activity of certain inner retina neurons. The therapeutic benefit of blocking connexin hemichannels was further evaluated by comparing these data against results from our previously published studies that also used the light-damaged rat retina model. The analysis showed that treatment with tonabersat alone was better than probenecid alone at restoring retinal function in the light-damaged retina model. The results assist in the interpretation of the differential action of connexin hemichannel and pannexin channel therapeutics for potential treatment of retinal diseases.


Assuntos
Benzamidas/uso terapêutico , Benzopiranos/uso terapêutico , Conexinas/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Probenecid/uso terapêutico , Retina/efeitos dos fármacos , Doenças Retinianas/tratamento farmacológico , Animais , Benzamidas/farmacologia , Benzopiranos/farmacologia , Conexina 43/análise , Feminino , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , Luz/efeitos adversos , Masculino , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley , Retina/patologia , Retina/efeitos da radiação , Doenças Retinianas/etiologia , Doenças Retinianas/patologia
7.
Cell Biol Int ; 45(3): 558-568, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33049086

RESUMO

Ultrasound (US) assisted drug delivery is receiving interest in treating posterior eye diseases, such as diabetic retinopathy due to its ability to maximize drug penetration into difficult to reach tissues. Despite its promise, the technique has only been investigated using healthy cell and tissue models, with no evidence to date about its safety in active disease. As a result, the aim of this study was to evaluate the safety of US administration in vitro in retinal pigment epithelial cells under normal and high glucose conditions. US protocols within the presently accepted safety threshold were applied and their influence on cell membrane and tight junction integrity as well as intracellular inflammation was evaluated using lactate dehydrogenase (LDH), zona occludens-1 (ZO-1), fluorescein isothiocyanate (FITC)-dextran dye leak and nuclear factor-kappaB (NF-κB) assays, respectively. Under high glucose conditions, US application increased LDH release and resulted in loss of ZO-1 labeling at 2 h; however, normal levels were restored within 24 h. US within its safety parameters did not induce any FITC-dextran dye leak or NF-κB nuclear translocation in normal or high glucose conditions. In conclusion, our results suggest that while high glucose conditions increase cell susceptibility to US-mediated stress, basal conditions can be restored within 24 h without long-lasting cell damage.


Assuntos
Células Epiteliais/patologia , Hiperglicemia/patologia , Epitélio Pigmentado da Retina/patologia , Ultrassom , Adulto , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Corantes/metabolismo , Dextranos/metabolismo , Células Epiteliais/efeitos dos fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Glucose/toxicidade , Humanos , L-Lactato Desidrogenase/metabolismo , NF-kappa B/metabolismo , Transporte Proteico/efeitos dos fármacos , Temperatura , Proteína da Zônula de Oclusão-1/metabolismo
8.
Exp Eye Res ; 202: 108384, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285185

RESUMO

Diabetic retinopathy (DR), the most common ocular complication associated with diabetes, is a chronic vascular and inflammatory disease that leads to vision loss. The inflammasome pathway, a key part of the innate immune system, is required to activate chronic inflammation in DR. Unfortunately, current therapies for DR target pathological signs that are downstream of the inflammasome pathway, making them only partly effective in treating the disease. Using in vitro and in vivo DR models, it was discovered that connexin43 hemichannel blockers can inhibit activation of the inflammasome pathway. However, those studies were conducted using in vitro cell culture and in vivo animal disease models that are predictive but do not, of course, like any model, completely replicate the human condition. Here, we have developed an addition to our armamentarium of useful models, an ex vivo human organotypic retinal culture model of DR by exposing human donor retinal explants to a combination of high glucose (HG) and pro-inflammatory cytokines, interleukin-1 beta (IL-1ß) and tumour necrosis factor alpha (TNF-α). We hypothesized that in this model, connexin43 hemichannel block would protect against NLRP3 inflammasome complex assembly which would in turn decrease signs of inflammation characteristic of DR. To test our hypothesis, molecular changes in the inflammatory and inflammasome pathway were assessed using immunohistochemistry and a Luminex cytokine release assay. Our results showed that the human retinal explant DR model was associated with increased inflammation and activation of the inflammasome pathway, characteristic of the human condition. Furthermore, we showed that by blocking connexin43 hemichannels with the hemichannel modulator, tonabersat, we were able to prevent NLRP3 inflammasome complex assembly, Müller cell activation, as well as release of pro-inflammatory cytokines and VEGF. This further supports the possible use of connexin43 hemichannel blockers as potential new therapies for DR.


Assuntos
Benzamidas/farmacologia , Benzopiranos/farmacologia , Conexina 43/metabolismo , Retinopatia Diabética/tratamento farmacológico , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Idoso , Idoso de 80 Anos ou mais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Feminino , Humanos , Microscopia Confocal , Pessoa de Meia-Idade
9.
Acta Diabetol ; 57(1): 13-22, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31030263

RESUMO

AIMS: The retinal pigment epithelium (RPE) is an important component of the outer blood-retinal barrier (BRB) that separates the choroid from the rest of the retina. Loss of RPE-mediated BRB integrity is a key feature of diabetic macular oedema (DME), a chronic pathology resulting from diabetic retinopathy (DR). Recent studies have shown that connexin43 hemichannel opening mediates key inflammatory pathways in DR, though its effect on the barrier properties of RPE cells remains unknown. Therefore, RPE breakdown was induced by exposing a monolayer of ARPE-19 cells to high glucose (HG) and 10 ng/mL each of the pro-inflammatory cytokines IL-1ß and TNF-α. The role of connexin43 hemichannels was assessed using a connexin43 hemichannel blocker, Peptide5. METHODS: Transepithelial resistance (TEER) and FITC-dextran dye leak across the ARPE-19 monolayer were used to measure RPE layer permeability. Immunohistochemistry was used to assess changes in connexin43, collagen IV and ZO-1 expression. ATP and lactate dehydrogenase (LDH) release were measured using commercially available kits. RESULTS: Connexin43 hemichannel block with Peptide5 prevented TEER reduction and FITC-dextran dye leak induced by a combination of HG and inflammatory cytokines. Peptide5 also blocked LDH and ATP release induced by the addition of HG and inflammatory cytokines. ZO-1 and connexin43 disruption and internalisation as well as upregulated secretion of collagen IV following HG and inflammatory cytokine exposure were also prevented. The addition of exogenous ATP into the culture medium was able to reverse Peptide5 protection against LDH release and change in connexin43 localisation, indicating that the initiating pathway in RPE disruption is connexin43 hemichannel-mediated ATP release. CONCLUSION: These findings support the idea that connexin43 hemichannels may mediate RPE disruption (and its role within the BRB) that occurs in DME through an ATP release/inflammasome pathway activation dependent manner. Connexin43 hemichannels are therefore a potential therapeutic target for the treatment of DME.


Assuntos
Conexina 43/metabolismo , Retinopatia Diabética/metabolismo , Edema Macular/metabolismo , Peptídeos/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Retinopatia Diabética/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Edema Macular/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396676

RESUMO

This study was undertaken to evaluate the connexin hemichannel blocker tonabersat for the inhibition of inflammasome activation and use as a potential treatment for diabetic retinopathy. Human retinal pigment epithelial cells (ARPE-19) were stimulated with hyperglycemia and the inflammatory cytokines IL-1ß and TNFα in order to mimic diabetic retinopathy molecular signs in vitro. Immunohistochemistry was used to evaluate the effect of tonabersat treatment on NLRP3, NLRP1, and cleaved caspase-1 expression and distribution. A Luminex cytokine release assay was performed to determine whether tonabersat affected proinflammatory cytokine release. NLRP1 was not activated in ARPE-19 cells, and IL-18 was not produced under disease conditions. However, NLRP3 and cleaved caspase-1 complex formation increased with hyperglycemia and cytokine challenge but was inhibited by tonabersat treatment. It also prevented the release of proinflammatory cytokines IL-1ß, VEGF, and IL-6. Tonabersat therefore has the potential to reduce inflammasome-mediated inflammation in diabetic retinopathy.


Assuntos
Benzamidas/farmacologia , Benzopiranos/farmacologia , Conexina 43/metabolismo , Retinopatia Diabética/metabolismo , Células Epiteliais/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Caspase 1/metabolismo , Linhagem Celular , Citocinas/metabolismo , Citocinas/farmacologia , Retinopatia Diabética/fisiopatologia , Células Epiteliais/metabolismo , Glucose/farmacologia , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Epitélio Pigmentado da Retina/citologia
11.
Drug Discov Today ; 24(8): 1627-1636, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30690195

RESUMO

Diabetic retinopathy (DR) is a chronic vascular disease of the retina that causes vision loss in patients with type 1 and type 2 diabetes, and is associated with vascular dysfunction and occlusion, retinal oedema, haemorrhage and inadequate growth of new blood vessels. Current DR therapies primarily target downstream, later-stage vascular defects with a significant proportion of diabetic macular oedema patients being non-responders. Moreover, other evidence suggests that prolonged use of therapies targeting vascular endothelial growth factor (VEGF) might be associated with increased onset of geographic atrophy and retinal ganglion cell death. It is therefore highly desirable to prevent the onset of DR or arrest its progression at a stage preceding the appearance of more-advanced pathology by targeting upstream disease mechanisms. Connexin43 hemichannels play a part in the pathogenesis of chronic inflammatory diseases, including inflammasome pathway activation; and hemichannel block has been shown to alleviate vascular leak and inflammation. This review discusses the inflammatory changes occurring in DR as well as current therapies and their limitations. It then focuses on the role of connexin43 in DR, providing evidence for the utility of connexin43 hemichannel blockers as novel therapeutics for DR treatment.


Assuntos
Conexina 43/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Mol Med (Berl) ; 97(2): 215-229, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30535867

RESUMO

Diabetic retinopathy (DR) is a vascular disease of the neuroretina characterised by hyperglycaemia and inflammation. Current DR therapies target late-stage vascular defects and there is evidence to suggest that they contribute to geographic atrophy and retinal ganglion cell death long term. Therefore, alternative treatments that target common upstream disease mechanisms are needed. Recent studies have shown that connexin43 hemichannel blockers can reduce inflammation and prevent vessel leak in brain and spinal cord lesions. The aim of this study was to evaluate the effectiveness of a connexin43 hemichannel blocker (Peptide5) in a mouse model of DR in which pro-inflammatory cytokines, IL-1ß and TNF-α, were intravitreally injected into non-obese diabetic (NOD, hyperglycaemic) mice. Fundus and optical coherence tomography images were taken to evaluate vessel dilation and beading as well as retinal and vitreous hyper-reflective foci (HRF). Immunohistochemistry was performed to assess levels of astrogliosis, microgliosis and inflammasome activation. Results showed that Peptide5 injection lowered the incidence of vessel dilation and beading, decreased the severity of vitreous and retinal HRF, and reduced sub-retinal fluid accumulation compared to the vehicle group. Furthermore, Peptide5 led to reduced connexin43 and GFAP upregulation, inhibited microglial infiltration into the outer nuclear layer and prevented upregulation of inflammasome markers compared to vehicle. The present study provides evidence in support of Peptide5, and connexin43 hemichannel block in general, as a potential upstream approach for the treatment of DR. KEY MESSAGES: Connexin43 is upregulated in a novel mouse model of diabetic retinopathy (DR). Connexin43 hemichannel block inhibits inflammation and inflammasome activation. Connexin43 hemichannel block prevents the development of clinical DR signs. Connexin43 hemichannel block is a potential upstream approach for DR treatment.


Assuntos
Conexina 43/antagonistas & inibidores , Retinopatia Diabética/prevenção & controle , Inflamação/prevenção & controle , Peptídeos/uso terapêutico , Animais , Conexina 43/imunologia , Retinopatia Diabética/imunologia , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Feminino , Inflamassomos/imunologia , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos NOD
13.
Sci Rep ; 8(1): 11256, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050146

RESUMO

The current study investigated the use of two cationic peptides, Xentry-KALA (XK) and Xentry-Protamine (XP), for intracellular delivery of Connexin43 antisense oligonucleotides (Cx43AsODN). The charge and size of Cx43AsODN:XK and Cx43AsODN:XP complexes was determined by Zetasizer analysis. The earliest positive zeta potential reading was obtained at a 1:2 and 1:1.2 charge ratio of Cx43AsODN:XK and Cx43AsODN:XP respectively, with Cx43AsODN:XK resulting in overall larger complexes than Cx43AsODN:XP. Gel shift mobility assays revealed complete complex formation at a 1:2.5 and 1:2.2 charge ratio of Cx43AsODN:XK and Cx43AsODN:XP, respectively. Cellular uptake studies were carried out in ARPE-19 cells. While both complexes were able to enter the cells, Cx43AsODN:XK uptake appeared punctate and circular indicative of endosomal containment. Cx43AsODN:XP uptake, in contrast, resulted in diffuse appearance inside the cell suggesting endosomal escape of the cargo. Finally, western blot analysis confirmed that Cx43AsODN:XP was able to knockdown Cx43 expression in these cells under normal and hypoxic conditions.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/metabolismo , Células Epiteliais/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Pinocitose , Linhagem Celular , Humanos , Peso Molecular , Oligodesoxirribonucleotídeos Antissenso/química , Epitélio Pigmentado da Retina , Eletricidade Estática
14.
Adv Drug Deliv Rev ; 126: 185-194, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29604375

RESUMO

Cataracts are one of the most prevalent diseases of the lens, affecting its transparency and are the leading cause of reversible blindness in the world. The clarity of the lens is essential for its normal physiological function of refracting light onto the retina. Currently there is no pharmaceutical treatment for prevention or cure of cataracts and surgery to replace the affected lens remains the gold standard in the management of cataracts. Pharmacological treatment for prevention of cataracts is hindered by many physiological barriers that must be overcome by a therapeutic agent to reach the avascular lens. Various therapeutic agents and formulation strategies are currently being investigated to prevent cataract formation as access to surgery is limited. This review provides a summary of recent research in the field of drug delivery to the lens for the management of cataracts including models used to study cataract treatments and discusses the future perspectives in the field.


Assuntos
Catarata/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos
15.
Int J Pharm ; 543(1-2): 38-45, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29581065

RESUMO

Conducting polymers such as polypyrrole (PPy) can be used as electrically responsive drug delivery systems typically prepared by electrochemical polymerisation, however, the amount of drug that can be delivered is typically low. To increase drug delivery capacity and prepare larger amounts of polymer, PPy nanoparticles were produced by chemical polymerisation over drug-loaded micelles. Two forms of dexamethasone were included to increase total drug loading and to explore the mechanisms of loading and release. The particles produced were approximately 50 nm in size and their conductivity and reversible redox activity were demonstrated. Loading of the hydrophobic dexamethasone base was more efficient than for the more hydrophilic phosphate salt. After pressing the particles into the desired form, electrically-responsive drug release was achieved with a pulsed potential signal being the most effective way to trigger release. Notably, the anionic phosphate salt of the drug was more sensitive to electrically stimulated release than the uncharged base of dexamethasone, highlighting the role of electrostatic forces in driving drug release. This system has potential to be loaded with different drugs widening the scope of application of these smart particles to treat a range of disease states.


Assuntos
Dexametasona/análogos & derivados , Portadores de Fármacos/química , Glucocorticoides/química , Micelas , Polímeros/química , Pirróis/química , Benzenossulfonatos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/administração & dosagem , Dexametasona/química , Liberação Controlada de Fármacos , Técnicas Eletroquímicas , Eletroquímica , Glucocorticoides/administração & dosagem , Humanos , Polimerização , Polímeros/administração & dosagem , Pirróis/administração & dosagem , Epitélio Pigmentado da Retina/citologia , Tensoativos/química
16.
Biomaterials ; 168: 10-23, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29597134

RESUMO

Recent studies have shown that Connexin43 mimetic peptide (Cx43 MP) can prevent secondary damage following retinal ischaemic and inflammatory disorders by blocking uncontrolled Cx43 hemichannel opening. However, limitations in peptide stability and the presence of various intraocular barriers limit efficient retinal delivery in the clinical setting. The present study aimed to achieve targeted and sustained peptide delivery to the retina by encapsulating Cx43 MP into hyaluronic acid (HA) coated albumin nanoparticles (NPs). Intraocular biodistribution, particle retention, retinal targeting, and therapeutic efficacy of intravitreally injected NPs encapsulating Cx43 MP were evaluated in a rat model of retinal ischaemia-reperfusion injury. NPs rapidly diffused through the vitreous and specifically targeted CD44-expressing retinal cells. NPs remained at the target site for extended periods enabling sustained peptide release and thus prolonged therapeutic action. Compared to free Cx43 MP, Cx43 MP loaded NPs enabled enhanced therapeutic efficacy preventing thinning of retinal layers and disruption of retinal blood vessels. Immunohistochemical results confirm that Cx43 MP loaded NPs efficiently reduced Cx43 expression, thereby suppressing ongoing inflammation and preventing the loss of retinal ganglion cells. Overall, HA coated NPs could have great potential as a peptide delivery platform in the treatment of chronic retinal degenerative and inflammatory disorders.


Assuntos
Albuminas , Portadores de Fármacos , Ácido Hialurônico , Nanopartículas , Peptídeos/uso terapêutico , Doenças Retinianas/tratamento farmacológico , Animais , Linhagem Celular , Conexina 43/química , Conexina 43/metabolismo , Conexina 43/uso terapêutico , Isquemia/tratamento farmacológico , Masculino , Ratos , Ratos Wistar , Doenças Retinianas/metabolismo
17.
Pharm Dev Technol ; 23(4): 324-333, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27670289

RESUMO

Frequent intravitreal injections are currently used to overcome the ocular barriers and provide sufficient drug to the posterior eye segment. However, intravitreal injections have been associated with a number of complications and high treatment costs. To overcome these limitations, peptide-loaded poly(d,l-lactic-co-glycolic acid) nanoparticles (PLGA NPs) were developed using the nanoprecipitation technique and were optimized via Box-Behnken Design (BBD) and Response Surface Methodology (RSM). Developed NPs were evaluated for potential toxicity and cell apoptosis using the zebrafish embryo toxicity (ZET) model with titanium dioxide NPs and ethanol (1% v/v) serving as positive controls. Developed NPs had a size of 75.6-153.8 nm, a polydispersity index between 0.11 and 0.25 and a zeta potential of -9.4 to -46.0 mV. Loaded peptide was found to be stable under various experimental conditions tested. BBD and RSM were validated through the characterization of optimized formulations. Survival and hatching rates of NP-treated zebrafish 0-144 h post-fertilization were found to be normal with no significant malformations. Cellular apoptosis studies also endorsed the non-cytotoxic nature of the NPs. The overall results indicate that optimized PLGA nanoparticles could be a promising platform for efficient peptide delivery to the posterior segment of the eye.


Assuntos
Portadores de Fármacos/toxicidade , Ácido Láctico/toxicidade , Nanopartículas/toxicidade , Peptídeos/administração & dosagem , Ácido Poliglicólico/toxicidade , Animais , Apoptose/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/efeitos adversos , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Injeções Intravítreas , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Peptídeos/química , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Testes de Toxicidade , Peixe-Zebra/embriologia
18.
Pharm Dev Technol ; 23(3): 255-260, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28875742

RESUMO

Corneal blindness can occur due to improper healing of the corneal tissues after induced injury or abrasion which can be accidental, pathogenic, or after corneal surgery. Abnormal regulation of the healing mechanisms can lead to corneal opacity. Reducing inflammation and promoting epithelial wound healing are crucial for scar-free corneal recovery without eyesight complications. Current approaches for corneal wound healing involve amniotic membrane (AM) bandages, bandage contact lenses (BCL), and collagen shields in conjunction with frequent administration of therapeutic eye drops. The problem with eye drops is poor bioavailability and patient incompliance that might lead to corneal wound healing complications and poor clinical outcomes. Various methods have been proposed for loading drugs into medicated bandage lenses. There are advantages and limitations associated with each technique regarding the ease of manufacture, drug loading, release kinetics, and suitability with various therapeutics and hydrogel types. There is still, however, no drug-eluting corneal bandage on the market despite the need for such a convenient and cost-efficient strategy for corneal wound healing. This review will highlight materials and therapeutics that can be used in medicated ocular bandages and various ways of incorporating drugs, while discussing the limitations and challenges associated with bringing medicated ocular bandages in the market.


Assuntos
Bandagens/efeitos adversos , Córnea/efeitos dos fármacos , Excipientes/efeitos adversos , Soluções Oftálmicas/efeitos adversos , Lentes de Contato Hidrofílicas/efeitos adversos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/efeitos adversos , Cicatrização/efeitos dos fármacos
19.
Biochim Biophys Acta Gen Subj ; 1862(3): 385-393, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29158134

RESUMO

BACKGROUND: Connexin43 hemichannels have been implicated in many inflammatory diseases including diabetic retinopathy (DR). Particularly, hemichannel-mediated ATP release has been associated with inflammasome pathway activation. Using an in vitro cell culture model, we evaluated hemichannel roles in response to inflammatory cytokines under high glucose (HG) conditions and propose a mechanism by which a connexin43 hemichannel-mediated autocrine ATP feedback loop augments chronic inflammatory disease. METHODS: Retinal pigment epithelial cells were exposed to HG, 10ng/mL pro-inflammatory cytokines IL-1ß and TNF-α, or a combination of both. Quantitative Cytometric Bead Array analysis was used to measure the release of inflammatory cytokines IL-6, IL-8, MCP-1, and sICAM-1, as well as VEGF and ATP. To determine the role of connexin43 hemichannels in the disease process, changes in cytokine and ATP release were evaluated following treatment with Peptide5, a connexin43 hemichannel blocker. Immunohistochemistry was used to compare NLRP3 inflammasome assembly under control and treatment conditions. RESULTS: Co-application of HG and cytokines increased the secretion of IL-6, IL-8, MCP-1, sICAM-1, VEGF and ATP, to significantly higher levels compared to cytokines alone. Peptide5 prevented cytokine release and prevented the increase in ATP release following co-application of HG and cytokines. Adding exogenous ATP negated Peptide5-mediated protection against inflammatory cytokine release in injury conditions. CONCLUSIONS: Our findings show that connexin43 hemichannels play an important role in the amplification and perpetuation of inflammation by mediating an ATP autocrine feedback loop in the inflammasome/inflammation cycle. GENERAL SIGNIFICANCE: Targeting connexin43 hemichannels offers a potential therapeutic strategy to break the inflammatory cycle in diseases such as DR, but also other chronic inflammatory indications.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexina 43/fisiologia , Retinopatia Diabética/metabolismo , Inflamassomos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Trifosfato de Adenosina/farmacologia , Comunicação Autócrina , Linhagem Celular , Conexina 43/antagonistas & inibidores , Citocinas/metabolismo , Citocinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Junções Comunicantes/fisiologia , Glucose/farmacologia , Humanos , Hiperglicemia/metabolismo , Inflamação/metabolismo , Epitélio Pigmentado da Retina/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Int J Mol Sci ; 18(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186067

RESUMO

Diabetic retinopathy (DR) develops due to hyperglycemia and inflammation-induced vascular disruptions in the retina with connexin43 expression patterns in the disease still debated. Here, the effects of hyperglycemia and inflammation on connexin43 expression in vitro in a mouse model of DR and in human donor tissues were evaluated. Primary human retinal microvascular endothelial cells (hRMECs) were exposed to high glucose (HG; 25 mM) or pro-inflammatory cytokines IL-1ß and TNF-α (10 ng/mL each) or both before assessing connexin43 expression. Additionally, connexin43, glial fibrillary acidic protein (GFAP), and plasmalemma vesicular associated protein (PLVAP) were labeled in wild-type (C57BL/6), Akita (diabetic), and Akimba (DR) mouse retinas. Finally, connexin43 and GFAP expression in donor retinas with confirmed DR was compared to age-matched controls. Co-application of HG and cytokines increased connexin43 expression in hRMECs in line with results seen in mice, with no significant difference in connexin43 or GFAP expression in Akita but higher expression in Akimba compared to wild-type mice. On PLVAP-positive vessels, connexin43 was higher in Akimba but unchanged in Akita compared to wild-type mice. Connexin43 expression appeared higher in donor retinas with confirmed DR compared to age-matched controls, similar to the distribution seen in Akimba mice and correlating with the in vitro results. Although connexin43 expression seems reduced in diabetes, hyperglycemia and inflammation present in the pathology of DR seem to increase connexin43 expression, suggesting a causal role of connexin43 channels in the disease progression.


Assuntos
Conexina 43/metabolismo , Retinopatia Diabética/metabolismo , Retina/metabolismo , Animais , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hiperglicemia/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA