Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(2): 361-375.e9, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181793

RESUMO

A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine live 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate the sequence and detail of shape changes, the tissues and molecular physiology involved, and the control of these movements. Morphometric analysis and targeted perturbation suggest that the movement is driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent canal system. Thermal proteome profiling and quantitative phosphoproteomics confirm the control of cellular relaxation by an Akt/NO/PKG/PKA pathway. Agitation-induced deflation leads to differential phosphorylation of proteins forming epithelial cell junctions, implying their mechanosensitive role. Unexpectedly, untargeted metabolomics detect a concomitant decrease in antioxidant molecules during deflation, reflecting an increase in reactive oxygen species. Together with the secretion of proteinases, cytokines, and granulin, this indicates an inflammation-like state of the deflating sponge reminiscent of vascular endothelial cells experiencing oscillatory shear stress. These results suggest the conservation of an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals and offer a possible mechanism for whole-body coordination through diffusible paracrine signals and mechanotransduction.


Assuntos
Mecanotransdução Celular , Poríferos , Animais , Células Endoteliais , Células Epiteliais , Água
2.
Anal Chem ; 95(4): 2260-2268, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36638115

RESUMO

T-cell engaging bispecific antibodies (TCBs) targeting CD3 and tumor-specific antigens are very promising therapeutic modalities. Since CD3 binding is crucial for the potency of TCBs, understanding the functional impact of CD3 antigen-binding fragment modifications is of utmost importance for defining critical quality attributes (CQA). The current CQA assessment strategy requires the integration of structure-based physicochemical separation and functional cell-based potency assays. However, this strategy is tedious, and coexisting proteoforms with potentially different functionalities may not be individually assessed. This increases the degree of ambiguities for defining meaningful CQAs, particularly for complex bispecific antibody formats such as TCBs. Here, we report for the first time a proof-of-concept study to separate and identify critically modified proteoforms of TCBs using functional CD3 target affinity chromatography (AC) coupled with online mass spectrometry (MS). Our method enabled functional distinction of relevant deamidated and glycosylated proteoforms and the simultaneous assessment of product-related variants such as TCB mispairings. For example, CD3 AC-MS allowed us to separate TCB mispairings with increased CD3 binding (i.e., knob-knob homodimers) within the bound fraction. The functional separation of proteoforms was validated using an established workflow for CQA identification based on thoroughly characterized ion-exchange fractions of a 2+1 TCB. In addition, the new method facilitated the criticality assessment of post-translational modifications in stress studies and structural variants in early stage clone selection. CD3 AC-MS has high impact for streamlining the integration of functional and structural characterizations of the large landscape of therapeutic CD3 targeting TCBs from early stage research to late stage characterization.


Assuntos
Anticorpos Biespecíficos , Linfócitos T , Linfócitos T/metabolismo , Espectrometria de Massas , Cromatografia de Afinidade , Glicosilação , Processamento de Proteína Pós-Traducional , Anticorpos Biespecíficos/metabolismo , Complexo CD3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA