Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 626(7998): 377-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109938

RESUMO

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Assuntos
Archaea , Bactérias , Ecossistema , Evolução Molecular , Genes Arqueais , Genes Bacterianos , Genômica , Conhecimento , Peptídeos Antimicrobianos/genética , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biomarcadores , Movimento Celular/genética , Neoplasias Colorretais/genética , Genômica/métodos , Genômica/tendências , Metagenômica/tendências , Família Multigênica , Filogenia , Reprodutibilidade dos Testes
2.
BMC Genomics ; 22(1): 592, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348664

RESUMO

BACKGROUND: Genetic aberrations in hepatocellular carcinoma (HCC) are well known, but the functional consequences of such aberrations remain poorly understood. RESULTS: Here, we explored the effect of defined genetic changes on the transcriptome, proteome and phosphoproteome in twelve tumors from an mTOR-driven hepatocellular carcinoma mouse model. Using Network-based Integration of multi-omiCS data (NetICS), we detected 74 'mediators' that relay via molecular interactions the effects of genetic and miRNA expression changes. The detected mediators account for the effects of oncogenic mTOR signaling on the transcriptome, proteome and phosphoproteome. We confirmed the dysregulation of the mediators YAP1, GRB2, SIRT1, HDAC4 and LIS1 in human HCC. CONCLUSIONS: This study suggests that targeting pathways such as YAP1 or GRB2 signaling and pathways regulating global histone acetylation could be beneficial in treating HCC with hyperactive mTOR signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Preparações Farmacêuticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Transcriptoma
3.
Environ Microbiol ; 23(3): 1765-1779, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33587772

RESUMO

Glycerol/diol dehydratases (GDH) are enzymes that catalyse the production of propionate from 1,2-propanediol, and acrolein from glycerol. Acrolein reacts with dietary carcinogenic heterocyclic amines (HCA), reducing HCA mutagenicity, but is itself also an antimicrobial agent and toxicant. Gut microbial GDH activity has been suggested as an endogenous acrolein source; however, there is limited information on the potential of the intestinal microbiota to have GDH activity, and what impact it can have on the intestinal ecosystem and host health. We hypothesized that GDH activity of gut microbiota is determined by the abundance and distribution of GDH-active taxa and can be enhanced by supplementation of the GDH active Anaerobutyricum hallii, and tested this hypothesis combining quantitative profiling of gdh, model batch fermentations, microbiota manipulation, and kinetic modelling of acrolein formation. Our results suggest that GDH activity is a common trait of intestinal microbiota shared by a few taxa, which was dependent on overall gdh abundance. Anaerobutyricum hallii was identified as a key taxon in GDH metabolism, and its supplementation increased the rate of GDH activity and acrolein release, which enhanced the transformation of HCA and reduced fermentation activity. The findings of this first systematic study on acrolein release by intestinal microbiota indicate that dietary and microbial modulation might impact GDH activity, which may influence host health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Propanodiol Desidratase , Clostridiales , Glicerol
4.
Cancer Med ; 9(3): 1058-1068, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31856411

RESUMO

Several studies have demonstrated that the viral genome can be methylated by the host cell during progression from persistent infection to cervical cancer. The aim of this study was to investigate whether methylation at a specific site could predict the development of viral persistence and whether viral load shows a correlation with specific methylation patterns. HPV16-positive samples from women aged 20-29 years (n = 99) with a follow-up time of 13 years, were included from a Danish cohort comprising 11 088 women. Viral load was measured by real-time PCR and methylation status was determined for 39 CpG sites in the upstream regulatory region (URR), E6/E7, and L1 region of HPV16 by next-generation sequencing. Participants were divided into two groups according to whether they were persistently (≥ 24 months) or transiently HPV16 infected. The general methylation status was significantly different between women with a persistent and women with a transient infection outcome (P = .025). One site located in L1 (nt. 5962) was statistically significantly (P = .00048) different in the methylation status after correction using the Holm-Sidak method (alpha = 0.05). Correlation analyses of samples from HPV16 persistently infected women suggest that methylation is higher although viral load is lower. This study indicates that methylation at position 5962 of the HPV16 genome within the L1 gene might be a predictive marker for the development of a persistent HPV16 infection.


Assuntos
Proteínas do Capsídeo/genética , Metilação de DNA , Papillomavirus Humano 16/genética , Infecções por Papillomavirus/virologia , Adulto , Colo do Útero/patologia , Colo do Útero/virologia , Ilhas de CpG/genética , DNA Viral/genética , DNA Viral/isolamento & purificação , Dinamarca , Feminino , Seguimentos , Genes Virais/genética , Papillomavirus Humano 16/isolamento & purificação , Papillomavirus Humano 16/patogenicidade , Humanos , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/patologia , Análise de Sequência de DNA , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/virologia , Esfregaço Vaginal , Carga Viral/genética , Adulto Jovem
5.
BMC Microbiol ; 19(1): 99, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096909

RESUMO

BACKGROUND: Consuming red and processed meat has been associated with an increased risk of colorectal cancer (CRC), which is partly attributed to exposure to carcinogens such as heterocyclic amines (HCA) formed during cooking and preservation processes. The interaction of gut microbes and HCA can result in altered bioactivities and it has been shown previously that human gut microbiota can transform mutagenic HCA to a glycerol conjugate with reduced mutagenic potential. However, the major form of HCA in the colon are glucuronides (HCA-G) and it is not known whether these metabolites, via stepwise microbial hydrolysis and acrolein conjugation, are viable precursors for glycerol conjugated metabolites. We hypothesized that such a process could be concurrently catalyzed by bacterial beta-glucuronidase (B-GUS) and glycerol/diol dehydratase (GDH) activity. We therefore investigated how the HCA-G PhIP-N2-ß-D-glucuronide (PhIP-G), a representative liver metabolite of PhIP (2-Amino-1-methyl-6-phenylimidazo [4,5-b] pyridine), which is the most abundant carcinogenic HCA in well-cooked meat, is transformed by enzymatic activity of human gut microbial representatives of the phyla Firmicutes, Bacteroidetes, and Proteobacteria. RESULTS: We employed a combination of growth and enzymatic assays, and a bioanalysis approach combined with metagenomics. B-GUS of Faecalibacterium prausnitzii converted PhIP-G to PhIP and GDH of Flavonifractor plautii, Blautia obeum, Eubacterium hallii, and Lactobacillus reuteri converted PhIP to PhIP-M1 in the presence of glycerol. In addition, B-GUS- and GDH-positive bacteria cooperatively converted PhIP-G to PhIP-M1. A screen of genes encoding B-GUS and GDH was performed for fecal microbiome data from healthy individuals (n = 103) and from CRC patients (n = 53), which revealed a decrease in abundance of taxa with confirmed GDH and HCA transformation activity in CRC patients. CONCLUSIONS: This study for the first time demonstrates that gut microbes mediate the stepwise transformation of PhIP-G to PhIP-M1 via the intermediate production of PhIP. Findings from this study suggest that targeted manipulation with gut microbes bearing specific functions, or dietary glycerol supplementation might modify gut microbial activity to reduce HCA-induced CRC risk.


Assuntos
Bactérias/enzimologia , Dieta , Microbioma Gastrointestinal , Glucuronidase/metabolismo , Glucuronídeos/metabolismo , Propanodiol Desidratase/metabolismo , Bactérias/genética , Bacteroidetes/enzimologia , Bacteroidetes/genética , Biotransformação , Carcinógenos/metabolismo , Neoplasias Colorretais , Fezes/química , Fezes/microbiologia , Firmicutes/enzimologia , Firmicutes/genética , Glicerol/química , Humanos , Imidazóis/metabolismo , Carne/análise , Metagenômica , Proteobactérias/enzimologia , Proteobactérias/genética
6.
Brief Bioinform ; 20(3): 778-788, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29272324

RESUMO

Molecular profiling of tumor biopsies plays an increasingly important role not only in cancer research, but also in the clinical management of cancer patients. Multi-omics approaches hold the promise of improving diagnostics, prognostics and personalized treatment. To deliver on this promise of precision oncology, appropriate bioinformatics methods for managing, integrating and analyzing large and complex data are necessary. Here, we discuss the specific requirements of bioinformatics methods and software that arise in the setting of clinical oncology, owing to a stricter regulatory environment and the need for rapid, highly reproducible and robust procedures. We describe the workflow of a molecular tumor board and the specific bioinformatics support that it requires, from the primary analysis of raw molecular profiling data to the automatic generation of a clinical report and its delivery to decision-making clinical oncologists. Such workflows have to various degrees been implemented in many clinical trials, as well as in molecular tumor boards at specialized cancer centers and university hospitals worldwide. We review these and more recent efforts to include other high-dimensional multi-omics patient profiles into the tumor board, as well as the state of clinical decision support software to translate molecular findings into treatment recommendations.


Assuntos
Biologia Computacional , Oncologia , Medicina de Precisão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
7.
Bioinformatics ; 34(1): 107-108, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968639

RESUMO

Motivation: Next-generation sequencing is now an established method in genomics, and massive amounts of sequencing data are being generated on a regular basis. Analysis of the sequencing data is typically performed by lab-specific in-house solutions, but the agreement of results from different facilities is often small. General standards for quality control, reproducibility and documentation are missing. Results: We developed NGS-pipe, a flexible, transparent and easy-to-use framework for the design of pipelines to analyze whole-exome, whole-genome and transcriptome sequencing data. NGS-pipe facilitates the harmonization of genomic data analysis by supporting quality control, documentation, reproducibility, parallelization and easy adaptation to other NGS experiments. Availability and implementation: https://github.com/cbg-ethz/NGS-pipe. Contact: niko.beerenwinkel@bsse.ethz.ch.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Software , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Neoplasias/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normas , Análise de Sequência de RNA/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA