RESUMO
Transcription factors and chromatin-remodeling complexes are key determinants of embryonic stem cell (ESC) identity. Here, we demonstrate that BRD4, a member of the bromodomain and extraterminal domain (BET) family of epigenetic readers, regulates the self-renewal ability and pluripotency of ESCs. BRD4 inhibition resulted in induction of epithelial-to-mesenchymal transition (EMT) markers and commitment to the neuroectodermal lineage while reducing the ESC multidifferentiation capacity in teratoma assays. BRD4 maintains transcription of core stem cell genes such as OCT4 and PRDM14 by occupying their super-enhancers (SEs), large clusters of regulatory elements, and recruiting to them Mediator and CDK9, the catalytic subunit of the positive transcription elongation factor b (P-TEFb), to allow Pol-II-dependent productive elongation. Our study describes a mechanism of regulation of ESC identity that could be applied to improve the efficiency of ESC differentiation.
Assuntos
Células-Tronco Embrionárias/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Transcrição GênicaRESUMO
Lysine acetylation regulates gene expression through modulating protein-protein interactions in chromatin. Chemical inhibition of acetyl-lysine binding bromodomains of the major chromatin regulators BET (bromodomain and extraterminal domain) proteins has been shown to effectively block cell proliferation in cancer and inflammation. However, whether selective inhibition of individual BET bromodomains has distinctive functional consequences remains only partially understood. In this study, we show that selective chemical inhibition of the first bromodomain of BET proteins using our small-molecule inhibitor, Olinone, accelerated the progression of mouse primary oligodendrocyte progenitors toward differentiation, whereas inhibition of both bromodomains of BET proteins hindered differentiation. This effect was target specific, as it was not detected in cells treated with inactive analogs and independent of any effect on proliferation. Therefore, selective chemical modulation of individual bromodomains, rather than use of broad-based inhibitors, may enhance regenerative strategies in disorders characterized by myelin loss such as aging and neurodegeneration.
Assuntos
Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Humanos , Lisina/metabolismo , Camundongos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Especificidade por Substrato , Fatores de Transcrição/antagonistas & inibidoresRESUMO
Twist is a key transcription activator of epithelial-mesenchymal transition (EMT). It remains unclear how Twist induces gene expression. Here we report a mechanism by which Twist recruits BRD4 to direct WNT5A expression in basal-like breast cancer (BLBC). Twist contains a "histone H4-mimic" GK-X-GK motif that is diacetylated by Tip60. The diacetylated Twist binds the second bromodomain of BRD4, whose first bromodomain interacts with acetylated H4, thereby constructing an activated Twist/BRD4/P-TEFb/RNA-Pol II complex at the WNT5A promoter and enhancer. Pharmacologic inhibition of the Twist-BRD4 association reduced WNT5A expression and suppressed invasion, cancer stem cell (CSC)-like properties, and tumorigenicity of BLBC cells. Our study indicates that the interaction with BRD4 is critical for the oncogenic function of Twist in BLBC.
Assuntos
Neoplasias da Mama/prevenção & controle , Carcinoma Basocelular/prevenção & controle , Transformação Celular Neoplásica , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Acetilação , Animais , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Proteínas de Ciclo Celular , Feminino , Imunofluorescência , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Técnicas Imunoenzimáticas , Lisina Acetiltransferase 5 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Células Tumorais Cultivadas , Proteína 1 Relacionada a Twist/antagonistas & inibidores , Proteínas Wnt/metabolismo , Proteína Wnt-5aRESUMO
BRD4, characterized by two acetyl-lysine binding bromodomains and an extra-terminal (ET) domain, is a key chromatin organizer that directs gene activation in chromatin through transcription factor recruitment, enhancer assembly, and pause release of the RNA polymerase II complex for transcription elongation. BRD4 has been recently validated as a new epigenetic drug target for cancer and inflammation. Our current knowledge of the functional differences of the two bromodomains of BRD4, however, is limited and is hindered by the lack of selective inhibitors. Here, we report our structure-guided development of diazobenzene-based small-molecule inhibitors for the BRD4 bromodomains that have over 90% sequence identity at the acetyl-lysine binding site. Our lead compound, MS436, through a set of water-mediated interactions, exhibits low nanomolar affinity (estimated Ki of 30-50 nM), with preference for the first bromodomain over the second. We demonstrated that MS436 effectively inhibits BRD4 activity in NF-κB-directed production of nitric oxide and proinflammatory cytokine interleukin-6 in murine macrophages. MS436 represents a new class of bromodomain inhibitors and will facilitate further investigation of the biological functions of the two bromodomains of BRD4 in gene expression.
Assuntos
Benzeno/química , Benzeno/farmacologia , Desenho de Fármacos , Animais , Linhagem Celular , Fenômenos Químicos , Ligantes , Camundongos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
Three different methods to quantitate tryptophan (Trp) analogue incorporation into recombinant proteins are described: first, spectroscopic analysis based on a linear combination of the absorption spectra of the aromatic residues in the denatured Trp-containing or analogue-substituted protein; second, chromatographic separation of analogue-substituted and Trp-containing proteins by HPLC; and third, mass spectrum analysis of the mixture of analogue-substituted and Trp-containing proteins. An accurate estimate of analogue incorporation in single-Trp proteins can be obtained directly by either analysis of the absorption spectrum or HPLC chromatography. While analysis of the absorption spectrum or HPLC chromatogram can provide an assessment of the average level of analogue incorporation for proteins that contain two or more Trp residues, mass spectroscopy analysis of peptides generated by protease digestion and separated by HPLC provides a general method for a complete quantitative description of the distribution of analogue incorporation. The more complex analysis by mass spectroscopy becomes important for multi-Trp proteins because the distribution of analogue versus Trp-containing polypeptide chains may not be the same as that predicted on the basis of average level of analogue incorporation.