Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Plant J ; 80(6): 1131-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280363

RESUMO

The widespread use of herbicides and antibiotics for selection of transgenic plants has not been very successful with regard to commercialization and public acceptance. Hence, alternative selection systems are required. In this study, we describe the use of ipt, the bacterial gene encoding the enzyme isopentenyl transferase from Agrobacterium tumefaciens, as a positive selectable marker for plastid transformation. A comparison between the traditional spectinomycin-based aadA selection system and the ipt selection system demonstrated that selection of transplastomic plants on medium lacking cytokinin was as effective as selection on medium containing spectinomycin. Proof of principle was demonstrated by transformation of the kasIII gene encoding 3-ketoacyl acyl carrier protein synthase III into tobacco plastids. Transplastomic tobacco plants were readily obtained using the ipt selection system, and were phenotypically normal despite over-expression of isopentenyl transferase. Over-expression of KASIII resulted in a significant increase in 16:0 fatty acid levels, and a significant decrease in the levels of 18:0 and 18:1 fatty acids. Our study demonstrates use of a novel positive plastid transformation system that may be used for selection of transplastomic plants without affecting the expression of transgenes within the integrated vector cassette or the resulting activity of the encoded protein. This system has the potential to be applied to monocots, which are typically not amenable to traditional antibiotic-based selection systems, and may be used in combination with a negative selectable marker as part of a two-step selection system to obtain homoplasmic plant lines.


Assuntos
Citocininas/metabolismo , Ácidos Graxos/metabolismo , Nicotiana/metabolismo , Espectinomicina/farmacologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Expressão Gênica , Vetores Genéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Nicotiana/genética , Transformação Genética , Transgenes
3.
Biochim Biophys Acta ; 1587(2-3): 133-44, 2002 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12084455

RESUMO

Uridine, a pyrimidine nucleoside essential for the synthesis of RNA and bio-membranes, is a crucial element in the regulation of normal physiological processes as well as pathological states. The biological effects of uridine have been associated with the regulation of the cardio-circulatory system, at the reproduction level, with both peripheral and central nervous system modulation and with the functionality of the respiratory system. Furthermore, uridine plays a role at the clinical level in modulating the cytotoxic effects of fluoropyrimidines in both normal and neoplastic tissues. The concentration of uridine in plasma and tissues is tightly regulated by cellular transport mechanisms and by the activity of uridine phosphorylase (UPase), responsible for the reversible phosphorolysis of uridine to uracil. We have recently completed several studies designed to define the mechanisms regulating UPase expression and better characterize the multiple biological effects of uridine. Immunohistochemical analysis and co-purification studies have revealed the association of UPase with the cytoskeleton and the cellular membrane. The characterization of the promoter region of UPase has indicated a direct regulation of its expression by the tumor suppressor gene p53. The evaluation of human surgical specimens has shown elevated UPase activity in tumor tissue compared to paired normal tissue.


Assuntos
Uridina Fosforilase/metabolismo , Uridina/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Transporte Biológico Ativo , Fluoruracila/administração & dosagem , Fluoruracila/efeitos adversos , Regulação Enzimológica da Expressão Gênica , Genes p53 , Homeostase , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Frações Subcelulares/metabolismo , Uridina/administração & dosagem , Uridina Fosforilase/genética , Vimentina/metabolismo
4.
Cancer Res ; 62(8): 2313-7, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11956089

RESUMO

We have reported the elevation of uridine phosphorylase (UPase) in many solid tumors and the presence of a variant phosphorolytic activity in breast cancer tissues (M. Liu et al., Cancer Res., 58: 5418-5424, 1998). To better understand the biological and pharmacological significance of these findings, we have developed an UPase gene knockout embryonic stem (ES) cell model by specific gene targeting techniques. In this cellular model, we establish the critical role of UPase as an important anabolic enzyme in 5-fluorouracil (5-FU) activation and pyrimidine salvage pathway regulation. It has long been known that UPase regulates the plasma concentration of uridine; however, little is known of the role of UPase in the activation and metabolism of 5-FU and its derivatives, mainly because of the lack of an appropriate model system. The experimental data indicate that the disruption of UPase activity in murine ES cells leads to a 10-fold increase in 5-FU IC(50) and a 2-3-fold reduction in its incorporation into nucleic acids, whereas no differences in toxicity is seen with other pyrimidine nucleoside analogues such as 5-fluorouridine, 2'-deoxy-5-fluorouridine, and 1-beta-D-arabinofuranosylcytosine compared with WT (wild-type) ES cells. Benzylacyclouridine can specifically prevent the WT ES cells from the sensitivity of 5-FU. Our data also shows the effect of UPase on the cytotoxicity of 5'-deoxy-5-fluorouridine (5'DFUR), a 5-FU prodrug. The IC(50) is increased almost 16-fold in the knockout cells compared with the wild type cells, demonstrating the role of UPase in catalyzing the conversion of 5'DFUR to 5-FU. These findings additionally elucidate the tumor-specific selectivity of capecitabine, the oral fluoropyrimidine prodrug approved for the treatment of metastatic breast and colorectal cancers. Not only do the knockout cells present a decreased incorporation of 5-FU into nucleic acids but also an increased reliance on the pyrimidine salvage pathway. The reduced dependence of UPase knockout cells on the pyrimidine de novo synthesis is reflected in the apparent resistance to phosphonacetyl-L-aspartic acid, a specific inhibitor of pyrimidine pathway, with a 5-fold elevation in its IC(50) in UPase-nullified cells compared with WT. In summary, we have successfully generated an UPase gene knockout cell model that presents reduced sensitivity to 5-FU, 5'DFUR, and phosphonacetyl-L-aspartic acid, although it does not affect the basic cellular physiology under normal tissue culture conditions. Considering the role of UPase in 5-FU metabolism and the elevated expression of this protein in cancer cells compared with paired normal tissues, additional investigation should be warranted to firmly establish the clinical role of UPase in the tumor selective activation of 5-FU and capecitabine.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Fluoruracila/farmacocinética , Pirimidinas/metabolismo , Células-Tronco/enzimologia , Uridina Fosforilase/metabolismo , Animais , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Biotransformação , Células Cultivadas , Embrião de Mamíferos , Fluoruracila/análogos & derivados , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Camundongos , Camundongos Knockout , Proteínas/genética , Uridina/metabolismo , Uridina/farmacocinética , Uridina Fosforilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA