Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38558981

RESUMO

Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we developed a series of genetically engineered mouse models of treatment-naïve and -experienced NTRK1/2/3 fusion-driven gliomas. Both the TRK kinase domain and the N-terminal fusion partners influenced tumor histology and aggressiveness. Treatment with TRK kinase inhibitors significantly extended survival of NTRK fusion-driven glioma mice in a fusion- and inhibitor-dependent manner, but tumors ultimately recurred due to the presence of treatment-resistant persister cells. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools for preclinical testing of novel inhibitors and to study the cellular responses of NTRK fusion-driven gliomas to therapy.

2.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38559075

RESUMO

Hypertranscription is common in human cancers and predicts poor prognosis. However detection of hypertranscription is indirect, relying on accurately quantifying mRNA levels and estimating cell numbers. Previously, we introduced FFPE-CUTAC, a genome-wide method for mapping RNA Polymerase II (RNAPII) in formalin-fixed paraffin-embedded (FFPE) sections. Here we use FFPE-CUTAC to demonstrate genome-wide hypertranscription both in transgene-driven mouse gliomas and in assorted human tumors at active regulatory elements and replication-coupled histone genes with reduced mitochondrial DNA abundance. FFPE-CUTAC identified RNAPII-bound regulatory elements shared among diverse cancers and readily categorized human tumors despite using very small samples and low sequencing depths. Remarkably, RNAPII FFPE-CUTAC identified de novo and precisely mapped HER2 amplifications punctuated by likely selective sweeps including genes encoding direct positive regulators of RNAPII itself. Our results demonstrate that FFPE-CUTAC measurements of hypertranscription and classifications of tumors using small sections provides an affordable and sensitive genome-wide strategy for personalized medicine.

3.
Nat Commun ; 14(1): 5930, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739938

RESUMO

For more than a century, formalin-fixed paraffin-embedded (FFPE) sample preparation has been the preferred method for long-term preservation of biological material. However, the use of FFPE samples for epigenomic studies has been difficult because of chromatin damage from long exposure to high concentrations of formaldehyde. Previously, we introduced Cleavage Under Targeted Accessible Chromatin (CUTAC), an antibody-targeted chromatin accessibility mapping protocol based on CUT&Tag. Here we show that simple modifications of our CUTAC protocol either in single tubes or directly on slides produce high-resolution maps of paused RNA Polymerase II at enhancers and promoters using FFPE samples. We find that transcriptional regulatory element differences produced by FFPE-CUTAC distinguish between mouse brain tumors and identify and map regulatory element markers with high confidence and precision, including microRNAs not detectable by RNA-seq. Our simple workflows make possible affordable epigenomic profiling of archived biological samples for biomarker identification, clinical applications and retrospective studies.


Assuntos
Cromatina , Epigenômica , Animais , Camundongos , Inclusão em Parafina , Estudos Retrospectivos , Cromatina/genética , Formaldeído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA