Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Mol Med ; 30(3): 223-238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272713

RESUMO

Stem cell therapy is an emerging treatment paradigm for stroke patients with remaining neurological deficits. While allogeneic cell transplants overcome the manufacturing constraints of autologous grafts, they can be rejected by the recipient's immune system, which identifies foreign cells through the human leukocyte antigen (HLA) system. The heterogeneity of HLA molecules in the human population would require a very high number of cell lines, which may still be inadequate for patients with rare genetic HLAs. Here, we outline key progress in genetic HLA engineering in pluripotent stem and derived cells to evade the host's immune system, reducing the number of allogeneic cell lines required, and examine safety measures explored in both preclinical studies and upcoming clinical trials.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transplante de Células-Tronco , Linhagem Celular
2.
Angiogenesis ; 26(3): 385-407, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36933174

RESUMO

The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1-/- mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1-/- mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Hipóxia/metabolismo , Isquemia/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/genética , Proteínas Imediatamente Precoces/metabolismo
3.
Brain ; 146(3): 823-841, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36397727

RESUMO

Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected cells do not cross CNS barriers and become mechanically trapped in peripheral organs. Although the blood-brain barrier and the blood-CSF barrier tightly limit the entrance of cells and molecules into the brain parenchyma, immune cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental approaches that have already been developed in which (i) cells are either engineered to express cell surface proteins mimicking infiltrating immune cells; or (ii) cell grafts are preconditioned with hypoxia or incubated with pharmacological agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the permeability of the blood-brain barrier. Although these approaches could significantly enhance homing of stem cells into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in safety-switch systems, which enable the precise elimination of transplanted cells on the administration of a drug, represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in stroke and may be relevant to other brain diseases.


Assuntos
Barreira Hematoencefálica , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Transporte Biológico , Acidente Vascular Cerebral/metabolismo , Transplante de Células-Tronco
4.
Front Immunol ; 13: 1080482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569903

RESUMO

Background: Stroke remains a leading cause of disability and death worldwide. It has become apparent that inflammation and immune mediators have a pre-dominant role in initial tissue damage and long-term recovery. Still, different immunosuppressed mouse models are necessary in stroke research e.g., to evaluate therapies using human cell grafts. Despite mounting evidence delineating the importance of inflammation in the stroke pathology, it is poorly described to what extent immune deficiency influences overall stroke outcome. Methods: Here, we assessed the stroke pathology of popular genetic immunodeficient mouse models, i.e., NOD scid gamma (NSG) and recombination activating gene 2 (Rag2-/-) mice as well as pharmacologically immunosuppressed mice and compared them to immune competent, wildtype (WT) C57BL/6J mice three weeks after injury. We performed histology, gene expression, blood serum and behavioural analysis to identify the impact of immunosuppression on stroke progression. Results: We detected changes in microglia activation/macrophage infiltration, scar-forming and vascular repair in immune-suppressed mice three weeks after injury. Transcriptomic analysis of stroked tissue revealed the strongest deviation from WT was observed in NSG mice affecting immunological and angiogenic pathways. Pharmacological immunosuppression resulted in the least variation in gene expression compared with the WT. These anatomical and genetic changes did not affect functional recovery in a time course of three weeks. To determine whether timing of immunosuppression is critical, we compared mice with acute and delayed pharmacological immunosuppression after stroke. Mice with delayed immunosuppression (7d) showed increased inflammatory and scarring responses compared to animals acutely treated with tacrolimus, thus more closely resembling WT pathology. Transplantation of human cells in the brains of immunosuppressed mice led to prolonged cell survival in all immunosuppressed mouse models, which was most consistent in NSG and Rag2-/- mice. Conclusions: We detected distinct anatomical and molecular changes in the stroke pathology between individual immunosuppressed mouse models that should be considered when selecting an appropriate mouse model for stroke research.


Assuntos
Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/genética , Inflamação/patologia , Macrófagos/patologia , Encéfalo/patologia
5.
J Transl Med ; 20(1): 421, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114512

RESUMO

BACKGROUND: Currently, there is no regenerative therapy for patients with neurological and neurodegenerative disorders. Cell-therapies have emerged as a potential treatment for numerous brain diseases. Despite recent advances in stem cell technology, major concerns have been raised regarding the feasibility and safety of cell therapies for clinical applications. METHODS: We generated good manufacturing practice (GMP)-compatible neural progenitor cells (NPCs) from transgene- and xeno-free induced pluripotent stem cells (iPSCs) that can be smoothly adapted for clinical applications. NPCs were characterized in vitro for their differentiation potential and in vivo after transplantation into wild type as well as genetically immunosuppressed mice. RESULTS: Generated NPCs had a stable gene-expression over at least 15 passages and could be scaled for up to 1018 cells per initially seeded 106 cells. After withdrawal of growth factors in vitro, cells adapted a neural fate and mainly differentiated into active neurons. To ensure a pure NPC population for in vivo applications, we reduced the risk of iPSC contamination by applying micro RNA-switch technology as a safety checkpoint. Using lentiviral transduction with a fluorescent and bioluminescent dual-reporter construct, combined with non-invasive in vivo bioluminescent imaging, we longitudinally tracked the grafted cells in healthy wild-type and genetically immunosuppressed mice as well as in a mouse model of ischemic stroke. Long term in-depth characterization revealed that transplanted NPCs have the capability to survive and spontaneously differentiate into functional and mature neurons throughout a time course of a month, while no residual pluripotent cells were detectable. CONCLUSION: We describe the generation of transgene- and xeno-free NPCs. This simple differentiation protocol combined with the ability of in vivo cell tracking presents a valuable tool to develop safe and effective cell therapies for various brain injuries.


Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , Células-Tronco Neurais , Animais , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , MicroRNAs/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios
6.
J Vis Exp ; (179)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35156654

RESUMO

Cell therapy has long been an emerging treatment paradigm in experimental neurobiology. However, cell transplantation studies often rely on end-point measurements and can therefore only evaluate longitudinal changes of cell migration and survival to a limited extent. This paper provides a reliable, minimally invasive protocol to transplant and longitudinally track neural progenitor cells (NPCs) in the adult mouse brain. Before transplantation, cells are transduced with a lentiviral vector comprising a bioluminescent (firefly-luciferase) and fluorescent (green fluorescent protein [GFP]) reporter. The NPCs are transplanted into the right cortical hemisphere using stereotaxic injections in the sensorimotor cortex. Following transplantation, grafted cells were detected through the intact skull for up to five weeks (at days 0, 3, 14, 21, 35) with a resolution limit of 6,000 cells using in vivo bioluminescence imaging. Subsequently, the transplanted cells are identified in histological brain sections and further characterized with immunofluorescence. Thus, this protocol provides a valuable tool to transplant, track, quantify, and characterize cells in the mouse brain.


Assuntos
Células-Tronco Neurais , Animais , Encéfalo/metabolismo , Encéfalo/cirurgia , Movimento Celular , Transplante de Células , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Transplante de Células-Tronco/métodos
7.
Sci Rep ; 9(1): 20040, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882970

RESUMO

Angiogenesis is a key restorative process following stroke but has also been linked to increased vascular permeability and blood brain barrier (BBB) disruption. Previous pre-clinical approaches primarily focused on the administration of vascular endothelial growth factor (VEGF) to promote vascular repair after stroke. Although shown to improve angiogenesis and functional recovery from stroke, VEGF increased the risk of blood brain barrier disruption and bleedings to such an extent that its clinical use is contraindicated. As an alternative strategy, antibodies against the neurite growth inhibitory factor Nogo-A have recently been shown to enhance vascular regeneration in the ischemic central nervous system (CNS); however, their effect on vascular permeability is unknown. Here, we demonstrate that antibody-mediated Nogo-A neutralization following stroke has strong pro-angiogenic effects but does not increase vascular permeability as opposed to VEGF. Moreover, VEGF-induced vascular permeability was partially prevented when VEGF was co-administered with anti-Nogo-A antibodies. This study may provide a novel therapeutic strategy for vascular repair and maturation in the ischemic brain.


Assuntos
Indutores da Angiogênese/imunologia , Autoanticorpos/imunologia , Permeabilidade Capilar/imunologia , Proteínas Nogo/imunologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Neovascularização Patológica , Fatores de Crescimento do Endotélio Vascular/administração & dosagem
8.
Trends Neurosci ; 42(9): 644-656, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31285047

RESUMO

Stroke patients have only limited therapeutic options and often remain with considerable disabilities. To promote neurological recovery, angiogenesis in the ischemic peri-infarct region has been recognized as an encouraging therapeutic target. Despite advances in mechanistic understanding of vascular growth and repair, effective and safe angiogenic treatments are currently missing. Besides the most intensively studied angiogenic growth factors, recent research has indicated that the process of vascular sprouting and migration also requires the participation of guidance molecules, many of which were initially identified as regulators of axonal growth. Here, we review the inhibitory and growth-promoting effects of guidance molecules on the vascular system and discuss their potential as novel angiogenic targets for neurovascular diseases.


Assuntos
Sistema Nervoso Central/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Lesões do Sistema Vascular/fisiopatologia , Indutores da Angiogênese/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Recuperação de Função Fisiológica/fisiologia
9.
FASEB J ; 33(1): 34-48, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085886

RESUMO

Blood vessels nurture every part of the human body. Consequently, abnormalities in the vasculature are closely associated with a variety of diseases, including cerebral stroke, heart disease, retinopathy, and cancer. Pro- or antiangiogenic therapies can influence these diseases by regulating the growth of new blood vessels from a pre-existing vascular network or dampening excessive blood growth. However, clinical translation of these approaches is slow and challenging. In this review, we discuss recent preclinical approaches to regulate angiogenesis and their potential and risks in a clinical setting.-Rust, R., Gantner, C., Schwab, M. E. Pro- and antiangiogenic therapies: current status and clinical implications.


Assuntos
Indutores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Humanos
10.
Trends Neurosci ; 41(12): 877-879, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30327142

RESUMO

After injury, activation and recruitment of inflammatory and immune cells has been thought to occur throughout the whole body. A recent study shows that after brain injury in mice, immune cells are primarily recruited from nearby skull bone marrow and invade the brain through microscopic vascular channels. Manipulation of this process may provide new therapeutic options.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Medula Óssea , Encéfalo , Movimento Celular , Inflamação , Camundongos , Crânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA