Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38597954

RESUMO

Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Macrófagos , Inflamação , RNA Viral , Pulmão
2.
Nature ; 588(7839): 670-675, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33238290

RESUMO

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.


Assuntos
COVID-19/virologia , Pulmão/citologia , Modelos Biológicos , Organoides/citologia , Organoides/virologia , SARS-CoV-2/fisiologia , Técnicas de Cultura de Tecidos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , COVID-19/metabolismo , COVID-19/patologia , Diferenciação Celular , Divisão Celular , Células Clonais/citologia , Células Clonais/metabolismo , Células Clonais/virologia , Humanos , Técnicas In Vitro , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/fisiologia , Integrina alfa6/análise , Integrina beta4/análise , Queratina-5/análise , Organoides/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2/crescimento & desenvolvimento , Análise de Célula Única , Receptor de TWEAK/análise
3.
bioRxiv ; 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32743583

RESUMO

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5 + basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5 + cells contained a distinct ITGA6 + ITGB4 + mitotic population whose proliferation segregated to a TNFRSF12A hi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12A hi subset of FACS-purified ITGA6 + ITGB4 + basal cells from human lung or derivative organoids. In vivo, TNFRSF12A + cells comprised ~10% of KRT5 + basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 apical-out organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.

4.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32706339

RESUMO

BACKGROUNDElevated levels of inflammatory cytokines have been associated with poor outcomes among COVID-19 patients. It is unknown, however, how these levels compare with those observed in critically ill patients with acute respiratory distress syndrome (ARDS) or sepsis due to other causes.METHODSWe used a Luminex assay to determine expression of 76 cytokines from plasma of hospitalized COVID-19 patients and banked plasma samples from ARDS and sepsis patients. Our analysis focused on detecting statistical differences in levels of 6 cytokines associated with cytokine storm (IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α) between patients with moderate COVID-19, severe COVID-19, and ARDS or sepsis.RESULTSFifteen hospitalized COVID-19 patients, 9 of whom were critically ill, were compared with critically ill patients with ARDS (n = 12) or sepsis (n = 16). There were no statistically significant differences in baseline levels of IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α between patients with COVID-19 and critically ill controls with ARDS or sepsis.CONCLUSIONLevels of inflammatory cytokines were not higher in severe COVID-19 patients than in moderate COVID-19 or critically ill patients with ARDS or sepsis in this small cohort. Broad use of immunosuppressive therapies in ARDS has failed in numerous Phase 3 studies; use of these therapies in unselected patients with COVID-19 may be unwarranted.FUNDINGFunding was received from NHLBI K23 HL125663 (AJR); The Bill and Melinda Gates Foundation OPP1113682 (AJR and CAB); Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Diseases #1016687 NIH/NIAID U19AI057229-16; Stanford Maternal Child Health Research Institute; and Chan Zuckerberg Biohub (CAB).


Assuntos
Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/imunologia , Pneumonia Viral/imunologia , Síndrome do Desconforto Respiratório/imunologia , Sepse/imunologia , Adulto , Idoso , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/sangue , Síndrome da Liberação de Citocina/sangue , Citocinas/sangue , Feminino , Humanos , Proteína Antagonista do Receptor de Interleucina 1/sangue , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Interleucina-18/sangue , Interleucina-18/imunologia , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Interleucina-8/sangue , Interleucina-8/imunologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Síndrome do Desconforto Respiratório/sangue , Sepse/sangue , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
5.
Diagn Microbiol Infect Dis ; 95(1): 77-79, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31005402

RESUMO

Eremothecium coryli is a dimorphic fungus of the Saccharomycetes class. While species within this class are known to cause human infection, Eremothecium species have previously only been known as phytopathogens and never been isolated from a human sample. Here, we report the first known case of human E. coryli infection.


Assuntos
Eremothecium/fisiologia , Fungemia/diagnóstico , Fungemia/tratamento farmacológico , Leucemia Mieloide Aguda/complicações , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Hemocultura , DNA Fúngico/genética , Eremothecium/citologia , Eremothecium/efeitos dos fármacos , Eremothecium/genética , Feminino , Fungemia/microbiologia , Fungemia/patologia , Humanos , Testes de Sensibilidade Microbiana , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Falha de Tratamento
6.
Methods ; 59(2): 225-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22705311

RESUMO

Interferon regulatory factor-3 (IRF-3) is a master transcription factor that drives the host intracellular innate immune response to virus infection. The importance of IRF-3 in innate immune responses is highlighted by the fact that pathogenic viruses have developed strategies for antagonism of IRF-3. Several tools exist for evaluation of viral regulation of IRF-3 activation and function, but high-quality monoclonal antibodies that mark the differential activation states of human IRF-3 are lacking. To study IRF-3 activation, turnover, and depletion in a high-throughput manner in the context of virus infection, we have developed two new monoclonal antibodies to human IRF-3. These antibodies detect IRF-3 in virus-infected cells in a wide variety of assays and provide a new tool to study virus-host interactions and innate immune signaling.


Assuntos
Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/metabolismo , Citometria de Fluxo/métodos , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fator Regulador 3 de Interferon/antagonistas & inibidores , Camundongos , Dados de Sequência Molecular
7.
J Biol Chem ; 279(45): 46558-65, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15328350

RESUMO

Patch clamp methods and reverse transcription-polymerase chain reaction (RT-PCR) were used to characterize an apical K+ channel in Calu-3 cells, a widely used model of human airway gland serous cells. In cell-attached and excised apical membrane patches, we found an inwardly rectifying K+ channel (Kir). The permeability ratio was PNa/PK = 0.058. In 30 patches with both cystic fibrosis transmembrane conductance regulator and Kir present, we observed 79 cystic fibrosis transmembrane conductance regulator and 58 Kir channels. The average chord conductance was 24.4 +/- 0.5 pS (n = 11), between 0 and -200 mV, and was 9.6 +/- 0.7 pS (n = 8), between 0 and 50 mV; these magnitudes and their ratio of approximately 2.5 are most similar to values for rectifying K+ channels of the Kir4.x subfamilies. We attempted to amplify transcripts for Kir4.1, Kir4.2, and Kir5.1; of these only Kir4.2 was present in Calu-3 lysates. The channel was only weakly activated by ATP and was relatively insensitive to internal pH. External Cs+ and Ba2+ blocked the channel with Kd values in the millimolar range. Quantitative modeling of Cl- secreting epithelia suggests that secretion rates will be highest and luminal K+ will rise to 16-28 mm if 11-25% of the total cellular K+ conductance is placed in the apical membrane (Cook, D. I., and Young, J. A. (1989) J. Membr. Biol. 110, 139-146). Thus, we hypothesize that the K+ channel described here optimizes the rate of secretion and is involved in K+ recycling for the recently proposed apical H+ -K+ -ATPase in Calu-3 cells.


Assuntos
Membrana Celular/metabolismo , Canais de Potássio/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Bário/química , Linhagem Celular , Césio/química , Cloro/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Humanos , Concentração de Íons de Hidrogênio , Proteínas Imediatamente Precoces/metabolismo , Cinética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Técnicas de Patch-Clamp , Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Canal Kir5.1
8.
J Biol Chem ; 279(37): 38854-60, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15234967

RESUMO

Airway submucosal gland serous cells express the cystic fibrosis transmembrane conductance regulator (CFTR) and secrete antimicrobial, anti-inflammatory, and antioxidant molecules. In cystic fibrosis, diminished gland secretion may impair innate airway host defenses. We used Calu-3 cells as a serous cell model to study the types of proteins released, the pathways that release them, and the possible involvement of CFTR activity in protein release. Many proteins were secreted constitutively into the apical fluid and showed increased release to agonists. We identified some of them by high pressure liquid chromatography-mass spectrometry and reverse transcriptase PCR, including lysozyme, siderocalin (the protein NGAL), which inhibits bacterial growth by binding iron-containing siderophores, HSC-71, which is thought to have anti-inflammatory properties, and the serine protease inhibitors alpha-1-antitrypsin and alpha-1-antichymotrypsin, which may function as antimicrobials as well as play a potential role in diminishing the activation of epithelial Na(+) channels by serine proteases. We used an enzyme-linked immunosorbent assay to quantify lysozyme secretion by Calu-3 cells in response to various agonists and inhibitors. Forskolin increased the lysozyme secretion rate (J(lyz)) from 32 to 77 ng/hr/cm(2) (n = 36, p < 0.005). Thapsigargin increased J(lyz) from 40 to 63 ng/h/cm(2) (n = 16, p < 0.005), and forskolin plus thapsigargin further increased the forskolin-stimulated J(lyz) by 48% (n = 9, p < 0.05). 1-Ethyl-benzimidazolinone and carbachol were less effective. Glibenclamide inhibited basal and stimulated J(lyz), but clotrimazole was without effect. CFTR(inh)172 caused a small (15%) but significant inhibition of forskolin-stimulated J(lyz) without affecting basal J(lyz). Thus, Calu-3 cells secrete diverse proteins that in aggregate would be expected to suppress microbial growth, protect the airways from damage, and limit the activation of epithelial Na(+) channels via serine proteases.


Assuntos
Células Epiteliais/metabolismo , Inibidores de Proteases/química , Mucosa Respiratória/patologia , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/farmacologia , Divisão Celular , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Colforsina/metabolismo , Colforsina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Glibureto/farmacologia , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Muramidase/metabolismo , Canais de Potássio/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Sódio/química , Espectrometria de Massas por Ionização por Electrospray , Suínos , Fatores de Tempo , alfa 1-Antiquimotripsina/química , alfa 1-Antitripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA