Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 15(5): 295-300, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37040396

RESUMO

In contrast to quantification of biotherapeutics, endogenous protein biomarker and target quantification using LC-MS based targeted proteomics can require a much more stringent and time-consuming tryptic signature peptide selection for each specific application. While some general criteria exist, there are no tools currently available in the public domain to predict the ionization efficiency for a given signature peptide candidate. Lack of knowledge of the ionization efficiencies forces investigators to choose peptides blindly, thus hindering method development for low abundant protein quantification. Here, the authors propose a tryptic signature peptide selection workflow to achieve a more efficient method development and to improve success rates in signature peptide selection for low abundant endogenous target and protein biomarker quantification.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Fluxo de Trabalho , Peptídeos , Biomarcadores
2.
Drug Metab Dispos ; 43(5): 756-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25755052

RESUMO

To characterize the hydrolysis of the peptide prodrug pomaglumetad methionil (LY2140023; (1R,4S,5S,6S)-4-(L-methionylamino)-2-thiabicyclo[3.1.0]hexane-4,6-dicarboxylic acid 2,2-dioxide), to the active drug LY404039 [(1R,4S,5S,6S)-4-amino-2-thiabicyclo[3.1.0]hexane-4,6-dicarboxylic acid 2,2-dioxide], a series of in vitro studies were performed in various matrices, including human intestinal, liver, kidney homogenate, and human plasma. The studies were performed to determine the tissue(s) and enzyme(s) responsible for the conversion of the prodrug to the active molecule. This could enable an assessment of the risk for drug interactions, an evaluation of pharmacogenomic implications, as well as the development of a Physiologically Based Pharmacokinetic (PBPK) model for formation of the active drug. Of the matrices examined, hydrolysis of pomaglumetad methionil was observed in intestinal and kidney homogenate preparations and plasma, but not in liver homogenate. Clearance values calculated after applying standard scaling factors suggest the intestine and kidney as primary sites of hydrolysis. Studies with peptidase inhibitors were performed in an attempt to identify the enzyme(s) catalyzing the conversion. Near complete inhibition of LY404039 formation was observed in intestinal and kidney homogenate and human plasma with the selective dehydropeptidase1 (DPEP1) inhibitor cilastatin. Human recombinant DPEP1 was expressed and shown to catalyze the hydrolysis, which was completely inhibited by cilastatin. These studies demonstrate pomaglumetad methionil can be converted to LY404039 via one or multiple enzymes completely inhibited by cilastatin, likely DPEP1, in plasma, the intestine, and the kidney, with the plasma and kidney involved in the clearance of the circulating prodrug. These experiments define a strategy for the characterization of enzymes responsible for the metabolism of other peptide-like compounds.


Assuntos
Aminoácidos/metabolismo , Peptídeos/metabolismo , Pró-Fármacos/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cilastatina/farmacologia , Óxidos S-Cíclicos/metabolismo , Dipeptidases/antagonistas & inibidores , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Hidrólise
3.
Artigo em Inglês | MEDLINE | ID: mdl-23831704

RESUMO

In this study we report a high sensitive method for the simultaneous analysis of LY2334737 (2'-deoxy-2',2'-difluoro-N-(1-oxo-2-propylpentyl)-cytidine), an amide prodrug of gemcitabine (2', 2'-difluoro-deoxycytidine), along with its active drug gemcitabine and its major metabolite dFdU (2',2'-difluoro-deoxyuridine) by LC-MS/MS. Quantification of all three analytes within a single analysis was challenging because the physio-chemical properties of LY2334737 were significantly different from gemcitabine and dFdU and was accomplished by incorporating column-switching. The assay was fully validated to quantify LY2334737 from 0.1 to 100ng/mL, gemcitabine from 0.25 to 100ng/mL and dFdU from 1 to 1000ng/mL in order to cover the diverse concentration ranges expected in clinical samples. A 25-fold dilution was also validated to accommodate any samples outside this range. Overall, the assay had good accuracy (ranging from -7.0 to 1.2% relative error) and precision (ranging from 2.1 to 8.4% relative standard deviation). Extraction efficiency was greater than 80% for all three analytes and there were no matrix effects. Plasma samples were stable for 24h at room temperature, 660 days in frozen storage, and at least 4 freeze-thaw cycles, at both -20 and -70°C. Data from clinical trials showed that plasma concentrations for LY2334737, gemcitabine, and dFdU were successfully quantified from a single LC-MS/MS analysis and that the assay ranges selected for the three analytes were appropriate and minimized the need for reanalysis.


Assuntos
Antimetabólitos Antineoplásicos/sangue , Desoxicitidina/análogos & derivados , Desoxiuridina/análogos & derivados , Floxuridina/análogos & derivados , Pró-Fármacos/farmacocinética , Espectrometria de Massas em Tandem/métodos , Antimetabólitos Antineoplásicos/metabolismo , Cromatografia Líquida/métodos , Desoxicitidina/sangue , Desoxicitidina/metabolismo , Desoxiuridina/sangue , Desoxiuridina/metabolismo , Floxuridina/sangue , Floxuridina/metabolismo , Humanos , Pró-Fármacos/metabolismo , Sensibilidade e Especificidade , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA