Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 55(2): 150-162.e6, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32857951

RESUMO

The interplay between pancreatic epithelium and the surrounding microenvironment is pivotal for pancreas formation and differentiation as well as adult organ homeostasis. The mesenchyme is the main component of the embryonic pancreatic microenvironment, yet its cellular identity is broadly defined, and whether it comprises functionally distinct cell subsets is not known. Using genetic lineage tracing, transcriptome, and functional studies, we identified mesenchymal populations with different roles during pancreatic development. Moreover, we showed that Pbx transcription factors act within the mouse pancreatic mesenchyme to define a pro-endocrine specialized niche. Pbx directs differentiation of endocrine progenitors into insulin- and glucagon-positive cells through non-cell-autonomous regulation of ECM-integrin interactions and soluble molecules. Next, we measured functional conservation between mouse and human pancreatic mesenchyme by testing identified mesenchymal factors in an iPSC-based differentiation model. Our findings provide insights into how lineage-specific crosstalk between epithelium and neighboring mesenchymal cells underpin the generation of different pancreatic cell types.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Mesoderma/metabolismo , Pâncreas/metabolismo , Animais , Sistema Endócrino , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos Transgênicos , Organogênese/fisiologia , Pâncreas/patologia
2.
Cell Reprogram ; 20(4): 215-224, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29989433

RESUMO

Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is a rare monogenic disease with autosomal dominant inheritance caused by mutations in the TP63 gene, leading to progressive corneal keratinocyte loss, limbal stem cell deficiency (LSCD), and eventually blindness. Currently, there is no treatment available to cure or slow down the keratinocyte loss. Human oral mucosal epithelial stem cells (hOMESCs), which are a mixed population of keratinocyte precursor stem cells, are used as source of autologous tissue for treatment of bilateral LSCD. However, hOMESCs from EEC patients have a reduced life span due to TP63 mutations and cannot be used for autologous transplantation. Human induced pluripotent stem cells (hiPSCs) represent a potentially unlimited source of autologous limbal stem cell for EEC patients and can be genetically modified by genome editing technologies to correct the disease ex vivo before transplantation. In this study, we describe for the first time the generation of integration-free EEC-hiPSCs from hOMESCs of EEC patients by Sendai virus vector and episomal vector-based reprogramming. The generated hiPSC clones expressed pluripotency markers and were successfully differentiated into derivatives of the three germ layers, as well as toward corneal epithelium. These cells may be used for EEC disease modeling and open perspectives for applications in cell therapy of LSCD.


Assuntos
Biomarcadores/análise , Diferenciação Celular , Fenda Labial/patologia , Fissura Palatina/patologia , Displasia Ectodérmica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mucosa Bucal/patologia , Células Cultivadas , Fenda Labial/genética , Fenda Labial/metabolismo , Fissura Palatina/genética , Fissura Palatina/metabolismo , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Bucal/metabolismo , Mutação , Fenótipo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA