Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 981: 176880, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128804

RESUMO

Ghrelin modulates several biological functions via selective activation of the growth hormone secretagogue receptor (GHSR). GHSR agonists may be useful for the treatment of anorexia and cachexia, while antagonists and inverse agonists may represent new drugs for the treatment of metabolic and substance use disorders. Thus, the identification and pharmacodynamic characterization of new GHSR ligands is of high interest. In the present work the label-free dynamic mass redistribution (DMR) assay has been used to evaluate the pharmacological activity of a panel of GHSR ligands. This includes the endogenous peptides ghrelin, desacyl-ghrelin and LEAP2(1-14). Among synthetic compounds, the agonists anamorelin and HM01, the antagonists HM04 and YIL-781, and the inverse agonist PF-05190457 have been tested, together with HM03, R011, and H1498 from patent literature. The DMR results have been compared to those obtained in parallel experiments with the calcium mobilization assay. Ghrelin, anamorelin, HM01, and HM03 behaved as potent full GHSR agonists. YIL-781 behaved as a partial GHSR agonist and R011 as antagonist in both the assays. LEAP2(1-14) resulted a GHSR inverse agonist in DMR but not in calcium mobilization assay. PF-05190457, HM04, and H1498 behaved as GHSR inverse agonists in DMR experiments, while they acted as antagonists in calcium mobilization studies. In conclusion, this study provided a systematic pharmacodynamic characterization of several GHSR ligands in two different pharmacological assays. It demonstrated that the DMR assay can be successfully used particularly to discriminate between antagonists and inverse agonists. This study may be useful for the selection of the most appropriate compounds to be used in future studies.


Assuntos
Cálcio , Grelina , Receptores de Grelina , Receptores de Grelina/agonistas , Receptores de Grelina/metabolismo , Receptores de Grelina/antagonistas & inibidores , Ligantes , Grelina/farmacologia , Grelina/metabolismo , Cálcio/metabolismo , Humanos , Animais , Cricetulus , Células CHO , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Hidrazinas , Piperidinas , Quinazolinonas
2.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293553

RESUMO

Recently, mixed opioid/NOP agonists came to the spotlight for their favorable functional profiles and promising outcomes in clinical trials as novel analgesics. This study reports on two novel chimeric peptides incorporating the fragment Tyr-c[D-Lys-Phe-Phe]Asp-NH2 (RP-170), a cyclic peptide with high affinity for µ and κ opioid receptors (or MOP and KOP, respectively), conjugated with the peptide Ac-RYYRIK-NH2, a known ligand of the nociceptin/orphanin FQ receptor (NOP), yielding RP-170-RYYRIK-NH2 (KW-495) and RP-170-Gly3-RYYRIK-NH2 (KW-496). In vitro, the chimeric KW-496 gained affinity for KOP, hence becoming a dual KOP/MOP agonist, while KW-495 behaved as a mixed MOP/NOP agonist with low nM affinity. Hence, KW-495 was selected for further in vivo experiments. Intrathecal administration of this peptide in mice elicited antinociceptive effects in the hot-plate test; this action was sensitive to both the universal opioid receptor antagonist naloxone and the selective NOP antagonist SB-612111. The rotarod test revealed that KW-495 administration did not alter the mice motor coordination performance. Computational studies have been conducted on the two chimeras to investigate the structural determinants at the basis of the experimental activities, including any role of the Gly3 spacer.


Assuntos
Analgésicos Opioides , Receptores Opioides , Animais , Camundongos , Analgésicos Opioides/uso terapêutico , Receptores Opioides/agonistas , Receptores Opioides kappa , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides mu/agonistas , Simulação de Acoplamento Molecular , Ligantes , Relação Dose-Resposta a Droga , Naloxona , Analgésicos/farmacologia , Peptídeos/farmacologia , Quimera , Peptídeos Cíclicos
3.
J Med Chem ; 64(10): 6656-6669, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33998786

RESUMO

The nociceptin/orphanin FQ (N/OFQ)/N/OFQ receptor (NOP) system controls different biological functions including pain and cough reflex. Mixed NOP/opioid receptor agonists elicit similar effects to strong opioids but with reduced side effects. In this work, 31 peptides with the general sequence [Tyr/Dmt1,Xaa5]N/OFQ(1-13)-NH2 were synthesized and pharmacologically characterized for their action at human recombinant NOP/opioid receptors. The best results in terms of NOP versus mu opioid receptor potency were obtained by substituting both Tyr1 and Thr5 at the N-terminal portion of N/OFQ(1-13)-NH2 with the noncanonical amino acid Dmt. [Dmt1,5]N/OFQ(1-13)-NH2 has been identified as the most potent dual NOP/mu receptor peptide agonist so far described. Experimental data have been complemented by in silico studies to shed light on the molecular mechanisms by which the peptide binds the active form of the mu receptor. Finally, the compound exerted antitussive effects in an in vivo model of cough.


Assuntos
Peptídeos/química , Receptores Opioides mu/agonistas , Receptores Opioides/agonistas , Animais , Sítios de Ligação , Tosse/induzido quimicamente , Tosse/tratamento farmacológico , Modelos Animais de Doenças , Cobaias , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Receptores Opioides/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Receptor de Nociceptina
4.
Bioconjug Chem ; 30(9): 2444-2451, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31461266

RESUMO

The general aim of the work was the validation of a new synthetic methodology designed for obtaining bifunctional heterotetrabranched peptide ligands. Applying an easily accessible synthetic route, we provided a small series of heteromultimeric peptide conjugates targeting the nociceptin/orphanin FQ (N/OFQ) peptide receptors (NOP) and mu opioid receptors. Among these, H-PWT1-N/OFQ-[Dmt1]dermorphin demonstrated a similar and high agonist potency at the NOP and mu receptors. The achieved results confirmed the robustness of the approach that is extremely versatile and virtually applicable to different peptide sequences whose pharmacological activity can be combined for generating dual acting multimeric compounds. These innovative pharmacological tools will be extremely helpful for investigating the consequences of the simultaneous activation and/or blockage of different peptidergic receptors.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Receptores Opioides mu/agonistas , Receptores Opioides/agonistas , Animais , Benzaldeídos/química , Células CHO , Cricetulus , Humanos , Maleimidas/química , Receptor de Nociceptina
5.
Expert Opin Ther Pat ; 27(3): 347-362, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27788040

RESUMO

INTRODUCTION: Neuropeptide S (NPS) is a 20-residue peptide and endogenous ligand of the NPS receptor (NPSR). This receptor was a formerly orphan GPCR whose activation increases calcium and cyclic adenosine monophosphate levels. The NPS/NPSR system is expressed in several brain regions where it controls important biological functions including locomotor activity, arousal and sleep, anxiety, food intake, memory, pain, and drug addiction. Areas covered: This review furnishes an updated overview of the patent literature covering NPSR ligands since 2005, when the first example of an NPSR antagonist was disclosed. Expert opinion: Several potent NPSR antagonists are available as valuable pharmacological tools despite showing suboptimal pharmacokinetic properties in vivo. The optimization of these ligands is needed to speed up their potential clinical advancement as pharmaceuticals to treat drug addiction. In order to support the design of novel NPSR antagonists, we performed a ligand-based conformational analysis recognizing some structural requirements for NPSR antagonism. The identification of small-molecule NPSR agonists now represents an unmet challenge to be addressed. These molecules will allow investigation of the beneficial effects of selective NPSR activation in a large panel of psychiatric disorders and to foresee their therapeutic potential as anxiolytics, nootropics, and analgesics.


Assuntos
Desenho de Fármacos , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Analgésicos/farmacologia , Animais , Ansiolíticos/farmacologia , Humanos , Ligantes , Nootrópicos/farmacologia , Patentes como Assunto , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
6.
Peptides ; 72: 95-103, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26028163

RESUMO

Nociceptin/orphanin FQ is the natural ligand of a Gi-protein coupled receptor named NOP. This peptidergic system is involved in the regulation of mood states and inflammatory responses. The present study aimed to investigate the consequences of blocking NOP signaling in lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors in mice. LPS 0.8mg/kg, ip, significantly induced sickness signs such as weight loss, decrease of water and food intake and depressive-like behavior in the tail suspension test. Nortriptyline (ip, 60min prior the test) reversed the LPS-induced depressive states. The NOP receptor antagonist SB-612111, 30min prior LPS, did not modify LPS-induced sickness signs and depressive-like behavior. However, when injected 24h after LPS, NOP antagonists (UFP-101, icv, and SB-612111, ip) significantly reversed the mood effects of LPS. LPS evoked similar sickness signs and significantly increased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) plasma levels 6h post-injection in wild-type ((NOP(+/+)) and NOP knockout ((NOP(-/-)) mice. However, LPS treatment elicited depressive-like effects in NOP(+/+) but not in NOP(-/-) mice. In conclusion, the pharmacological and genetic blockade of NOP signaling does not affect LPS evoked sickness signs while reversing depressive-like behavior.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Receptores Opioides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Depressão/induzido quimicamente , Depressão/genética , Depressão/metabolismo , Interleucina-6/sangue , Camundongos , Camundongos Knockout , Receptores Opioides/genética , Fator de Necrose Tumoral alfa/sangue , Receptor de Nociceptina
7.
J Pharmacol Exp Ther ; 328(2): 549-55, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18971372

RESUMO

Neuropeptide S (NPS) was identified as the endogenous ligand of an orphan receptor now referred to as the NPS receptor (NPSR). In the frame of a structure-activity study performed on NPS Gly5, the NPSR ligand [D-Cys(tBu)(5)]NPS was identified. [D-Cys(tBu)(5)]NPS up to 100 microM did not stimulate calcium mobilization in human embryonic kidney (HEK) 293 cells stably expressing the mouse NPSR; however, in a concentration-dependent manner, the peptide inhibited the stimulatory effects elicited by 10 and 100 nM NPS (pK(B), 6.62). In Schild analysis experiments [D-Cys(tBu)(5)]NPS (0.1-100 microM) produced a concentration-dependent and parallel rightward shift of the concentration-response curve to NPS, showing a pA(2) value of 6.44. Ten micromolar [D-Cys(tBu)(5)]NPS did not affect signaling at seven NPSR unrelated G-protein-coupled receptors. In the mouse righting reflex (RR) recovery test, NPS given at 0.1 nmol i.c.v. reduced the percentage of animals losing the RR in response to 15 mg/kg diazepam and their sleeping time. [d-Cys(tBu)(5)]NPS (1-10 nmol) was inactive per se but dose-dependently antagonized the arousal-promoting action of NPS. Finally, NPSR-deficient mice were similarly sensitive to the hypnotic effects of diazepam as their wild-type littermates. However, the arousal-promoting action of 1 nmol NPS could be detected in wild-type but not in mutant mice. In conclusion, [D-Cys(tBu)(5)]NPS behaves both in vitro and in vivo as a pure and selective NPSR antagonist but with moderate potency. Moreover, using this tool together with receptor knockout mice studies, we demonstrated that the arousal-promoting action of NPS is because of the selective activation of the NPSR protein.


Assuntos
Neuropeptídeos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA